Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Как приготовить тортилью
  • Имбирный чай — рецепты приготовления
  • Имя Серафима в православном календаре (Святцах)
  • Пастырь и учитель. Духовник Царской Семьи. На Полтавской кафедре
  • Из чего состоит кровь человека? Что входит в состав крови? В норме СОЭ равна. Строение и функции эритроцитов в организме человека

    Из чего состоит кровь человека? Что входит в состав крови? В норме СОЭ равна. Строение и функции эритроцитов в организме человека

    Определение понятия системы крови

    Система крови (по Г.Ф. Лангу, 1939) — совокупность собственно крови, органов кроветворения, кроверазрушения (красный костный мозг, тимус, селезенка, лимфатические узлы) и нейрогуморальных механизмов регуляции, благодаря которым сохраняются постоянство состава и функции крови.

    В настоящее время систему крови функционально дополняют органами синтеза белков плазмы (печень), доставки в кровоток и выведения воды и электролитов (кишечник, ночки). Важнейшими особенностями крови как функциональной системы являются следующие:

    • она может выполнять свои функции, только находясь в жидком агрегатном состоянии и в постоянном движении (по кровеносным сосудам и полостям сердца);
    • все ее составные части образуются за пределами сосудистого русла;
    • она объединяет работу многих физиологических систем организма.

    Состав и количество крови в организме

    Кровь — это жидкая соединительная ткань, которая состоит из жидкой части - и взвешенных в ней клеток - : (красных клеток крови), (белых клеток крови), (кровяных пластинок). У взрослого человека форменные элементы крови составляют около 40-48%, а плазма — 52-60%. Это соотношение получило название гематокритного числа (от греч.haima - кровь,kritos - показатель). Состав крови приведен на рис. 1.

    Рис. 1. Состав крови

    Общее количество крови (сколько крови) в организме взрослого человека в норме составляет 6-8% массы тела, т.е. примерно 5-6 л.

    Физико-химические свойства крови и плазмы

    Сколько крови в организме человека?

    На долю крови у взрослого человека приходится 6-8% массы тела, что соответствует приблизительно 4,5-6,0 л (при средней массе 70 кг). У детей и у спортсменов объем крови в 1,5-2,0 раза больше. У новорожденных он составляет 15% от массы тела, у детей 1-го года жизни — 11%. У человека в условиях физиологического покоя не вся кровь активно циркулирует по сердечно-сосудистой системе. Часть ее находится в кровяных депо — венулах и венах печени, селезенки, легких, кожи, скорость кровотока в которых значительно снижена. Общее количество крови в организме сохраняется на относительно постоянном уровне. Быстрая потеря 30-50% крови может привести организм к гибели. В этих случаях необходимо срочное переливание препаратов крови или кровезамещающих растворов.

    Вязкость крови обусловлена наличием в ней форменных элементов, прежде всего эритроцитов, белков и липопротеинов. Если вязкость воды принять за 1, то вязкость цельной крови здорового человека составит около 4,5 (3,5-5,4), а плазмы — около 2,2 (1,9-2,6). Относительная плотность (удельный вес) крови зависит в основном от количества эритроцитов и содержания белков в плазме. У здорового взрослого человека относительная плотность цельной крови составляет 1,050- 1,060 кг/л, эритроцитарной массы — 1,080-1,090 кг/л, плазмы крови — 1,029-1,034 кг/л. У мужчин она несколько больше, чем у женщин. Самая высокая относительная плотность цельной крови (1,060-1,080 кг/л) отмечается у новорожденных. Эти различия объясняются разницей в количестве эритроцитов в крови людей разного пола и возраста.

    Показатель гематокрита — часть объема крови, приходящаяся на долю форменных элементов (прежде всего, эритроцитов). В норме показатель гематокрита циркулирующей крови взрослого человека составляет в среднем 40-45% (у муж- чип — 40-49%, у женщин — 36-42%). У новорожденных он приблизительно на 10% выше, а у маленьких детей — примерно на столько же ниже, чем у взрослого человека.

    Плазма крови: состав и свойства

    Осмотическое давление крови, лимфы и тканевой жидкости определяет обмен воды между кровью и тканями. Изменение осмотического давления жидкости, окружающей клетки, ведет к нарушению в них водного обмена. Это видно на примере эритроцитов, которые в гипертоническом растворе NaCl (много соли) теряют воду и сморщиваются. В гипотоническом растворе NaCl (мало соли) эритроциты, наоборот, набухают, увеличиваются в объеме и могут лопнуть.

    Осмотическое давление крови зависит от растворенных в ней солей. Около 60% этого давления создается NaCl. Осмотическое давление крови, лимфы и тканевой жидкости приблизительно одинаково (примерно 290-300 мосм/л, или 7,6 атм) и отличается постоянством. Даже в случаях, когда в кровь поступает значительное количество воды или соли, осмотическое давление не претерпевает значительных изменений. При избыточном поступлении в кровь вода быстро выводится почками и переходит в ткани, что восстанавливает исходную величину осмотического давления. Если же в крови повышается концентрация солей, то в сосудистое русло переходит вода из тканевой жидкости, а почки начинают усиленно выводить соль. Продукты переваривания белков, жиров и углеводов, всасывающиеся в кровь и лимфу, а также низкомолекулярные продукты клеточного метаболизма могут изменять осмотическое давление в небольших пределах.

    Поддержание постоянства осмотического давления играет очень важную роль в жизнедеятельности клеток.

    Концентрация водородных ионов и регуляция рН крови

    Кровь имеет слабощелочную среду: рН артериальной крови равен 7,4; рН венозной крови вследствие большого содержания в ней углекислоты составляет 7,35. Внутри клеток рН несколько ниже (7,0-7,2), что обусловлено образованием в них при метаболизме кислых продуктов. Крайними пределами изменений рН, совместимыми с жизнью, являются величины от 7,2 до 7,6. Смещение рН за эти пределы вызывает тяжелые нарушения и может привести к смерти. У здоровых людей колеблется в пределах 7,35-7,40. Длительное смещение рН у человека даже на 0,1 -0,2 может оказаться гибельным.

    Так, при рН 6,95 наступает потеря сознания, и если эти сдвиги в кратчайший срок не ликвидируются, то неминуем летальный исход. Если рН становится равен 7,7, то наступают тяжелейшие судороги (тетания), что также может привести к смерти.

    В процессе обмена веществ ткани выделяют в тканевую жидкость, а следовательно, и в кровь «кислые» продукты обмена, что должно приводить к сдвигу рН в кислую сторону. Так, в результате интенсивной мышечной деятельности в кровь человека может поступать в течение нескольких минут до 90 г молочной кислоты. Если это количество молочной кислоты прибавить к объему дистиллированной воды, равному объему циркулирующей крови, то концентрация ионов возрастет в ней в 40 000 раз. Реакция же крови при этих условиях практически не изменяется, что объясняется наличием буферных систем крови. Кроме того, в организме рН сохраняется за счет работы почек и легких, удаляющих из крови углекислый газ, избыток солей, кислот и щелочей.

    Постоянство рН крови поддерживается буферными системами: гемоглобиновой, карбонатной, фосфатной и белками плазмы.

    Буферная система гемоглобина самая мощная. На ее долю приходится 75% буферной емкости крови. Эта система состоит из восстановленного гемоглобина (ННb) и его калиевой соли (КНb). Буферные свойства ее обусловлены тем, что при избытке Н + КНb отдает ионы К+, а сам присоединяет Н+ и становится очень слабо диссоциирующей кислотой. В тканях система гемоглобина крови выполняет функцию щелочи, предотвращая закисление крови вследствие поступления в нее углекислого газа и Н+ -ионов. В легких гемоглобин ведет себя как кислота, предотвращая защелачивание крови после выделения из нее углекислоты.

    Карбонатная буферная система (Н 2 СО 3 и NaHC0 3) по своей мощности занимает второе место после системы гемоглобина. Она функционирует следующим образом: NaHCO 3 диссоциирует на ионы Na + и НС0 3 - . При поступлении в кровь более сильной кислоты, чем угольная, происходит реакция обмена ионами Na+ с образованием слабо диссоциирующей и легко растворимой Н 2 СО 3 Таким образом, предотвращается повышение концентрации Н + -ионов в крови. Увеличение в крови содержания угольной кислоты приводит к ее распаду (под влиянием особого фермента, находящегося в эритроцитах, — карбоангидразы) на воду и углекислый газ. Последний поступает в легкие и выделяется в окружающую среду. В результате этих процессов поступление кислоты в кровь приводит лишь к небольшому временному повышению содержания нейтральной соли без сдвига рН. В случае поступления в кровь щелочи, она реагирует с угольной кислотой, образуя гидрокарбонат (NaHC0 3) и воду. Возникающий при этом дефицит угольной кислоты немедленно компенсируется уменьшением выделения углекислого газа легкими.

    Фосфатная буферная система образована дигидрофосфатом (NaH 2 P0 4) и гидрофосфатом (Na 2 HP0 4) натрия. Первое соединение слабо диссоциирует и ведет себя как слабая кислота. Второе соединение обладает щелочными свойствами. При введении в кровь более сильной кислоты она реагируете Na,HP0 4 , образуя нейтральную соль и увеличивая количество мало диссоциирующего дигидрофосфата натрия. В случае введения в кровь сильной щелочи она взаимодействует с ди гидрофосфатом натрия, образуя слабощелочной гидрофосфат натрия; рН крови при этом изменяется незначительно. В обоих случаях избыток ди гидрофосфата и гидрофосфата натрия выделяется с мочой.

    Белки плазмы играют роль буферной системы благодаря своим амфотерным свойствам. В кислой среде они ведут себя как щелочи, связывая кислоты. В щелочной среде белки реагируют как кислоты, связывающие щелочи.

    Важная роль в поддержании рН крови отводится нервной регуляции. При этом преимущественно раздражаются хеморецепторы сосудистых рефлексогенных зон, импульсы от которых поступают в продолговатый мозг и другие отделы ЦНС, что рефлекторно включает в реакцию периферические органы — почки, легкие, потовые железы, желудочно-кишечный тракт, деятельность которых направлена на восстановление исходных величин рН. Так, при сдвиге рН в кислую сторону почки усиленно выделяют с мочой анион Н 2 Р0 4 -. При сдиге рН в щелочную сторону увеличивается выделение почками анионов НР0 4 -2 и НС0 3 -. Потовые железы человека способны выводить избыток молочной кислоты, а легкие — СО2.

    При различных патологических состояниях может наблюдаться сдвиг рН как в кислую, так и в щелочную среду. Первый из них носит название ацидоз, второй - алкалоз.

    Кровь – это жидкая соединительная ткань красного цвета, которая все время находится в движении и выполняет много сложных и важных для организма функций. Она постоянно циркулирует в системе кровообращения и переносит необходимые для обменных процессов газы и растворенные в ней вещества.

    Строение крови

    Что такое кровь? Это ткань, которая состоит из плазмы и находящихся в ней в виде взвеси особых кровяных клеток. Плазма – это прозрачная жидкость желтоватого цвета, составляющая более половины всего объема крови. . В ней находится три основных вида форменных элементов:

    • эритроциты – красные клетки, которые придают крови красный цвет за счет находящегося в них гемоглобина;
    • лейкоциты – белые клетки;
    • тромбоциты – кровяные пластинки.

    Артериальная кровь, которая поступает из легких в сердце и затем разносится ко всем органам, обогащена кислородом и имеет ярко-алый цвет. После того как кровь отдаст кислород тканям, она по венам возвращается к сердцу. Лишенная кислорода, она становится более темной.

    В кровеносной системе взрослого человека циркулирует примерно от 4 до 5 литров крови. Примерно 55% объема занимает плазма, остальное приходится на форменные элементы, при этом большую часть составляют эритроциты – более 90%.

    Кровь – это вязкая субстанция. Вязкость зависит от количества находящихся в ней белков и эритроцитов. Это качество влияет на кровяное давление и скорость движения. Плотностью крови и характером движения форменных элементов обусловлена ее текучесть. Клетки крови двигаются по-разному. Они могут перемещаться группами или поодиночке. Эритроциты могут двигаться как по отдельности, так и целыми «стопками», как сложенные монеты, как правило, создают поток в центре сосуда. Белые клетки перемещаются поодиночке и обычно держатся около стенок.

    Плазма – жидкая составляющая светло-желтого цвета, который обусловлен незначительным количеством желчного пигмента и других окрашенных частиц. Примерно на 90 % она состоит из воды и приблизительно на 10% из органических веществ и минералов, растворенных в ней. Ее состав не отличается постоянством и меняется в зависимости от принятой пищи, количества воды и солей. Состав растворенных в плазме веществ следующий:

    • органические – около 0,1% глюкозы, примерно 7% белков и около 2% жиров, аминокислот, молочной и мочевой кислоты и других;
    • минералы составляют 1% (анионы хлора, фосфора, серы, йода и катионы натрия, кальция, железа, магния, калия.

    Белки плазмы принимают участие в обмене воды, распределяют ее между тканевой жидкостью и кровью, придают крови вязкость. Некоторые из белков являются антителами и обезвреживают чужеродных агентов. Важная роль отводится растворимому белку фибриногену. Он принимает участие в процессе , превращаясь под действием свертывающих факторов в нерастворимый фибрин.

    Кроме этого, в плазме есть гормоны, которые вырабатываются железами внутренней секреции, и другие необходимые для деятельности систем организма биоактивные элементы.

    Плазма, лишенная фибриногена, называется сывороткой крови. Более подробно о плазме крови можно почитать здесь.

    Эритроциты

    Самые многочисленные клетки крови, составляющие порядка 44-48 % от ее объема. Они имеют вид дисков, двояковогнутых в центре, диаметром около 7,5 мкм. Форма клеток обеспечивает эффективность физиологических процессов. За счет вогнутости увеличивается площадь поверхности сторон эритроцита, что важно для обмена газами. Зрелые клетки не содержат ядер. Главная функция эритроцитов – доставка кислорода из легких в ткани организма.

    Название их переводится с греческого как «красный». Своим цветом эритроциты обязаны очень сложному по строению белку гемоглобину, который способен связываться с кислородом. В составе гемоглобина – белковая часть, которая называется глобином, и небелковая (гем), содержащая железо. Именно благодаря железу гемоглобин может присоединять молекулы кислорода.

    Эритроциты образуются в костном мозге. Срок их полного созревания составляет примерно пять дней. Продолжительность жизни красных клеток – около 120 дней. Разрушение эритроцитов происходит в селезенке и печени. Гемоглобин распадается на глобин и гем. Что происходит с глобином, неизвестно, а из гема высвобождаются ионы железа, возвращаются в костный мозг и идут на производство новых эритроцитов. Гем без железа преобразуется в желчный пигмент билирубин, который с желчью поступает в пищеварительный тракт.

    Снижение уровня приводит к такому состоянию, как анемия, или малокровие.

    Лейкоциты

    Бесцветные клетки периферической крови, защищающие организм от внешних инфекций и патологически измененных собственных клеток. Белые тельца делятся на зернистые (гранулоциты) и незернистые (агранулоциты). К первым относятся нейтрофилы, базофилы, эозинофилы, которые отличают по реакции на разные красители. Ко вторым – моноциты и лимфоциты. Зернистые лейкоциты имеют гранулы в цитоплазме и ядро, состоящее из сегментов. Агранулоциты лишены зернистости, их ядро имеет обычно правильную округлую форму.

    Гранулоциты образуются в костном мозге. После созревания, когда образуется зернистость и сегментоядерность, поступают в кровь, где передвигаются вдоль стенок, совершая амебоидные движения. Защищают организм преимущественно от бактерий, способны покидать сосуды и скапливаться в очагах инфекций.

    Моноциты – крупные клетки, которые образуются в костном мозге, лимфоузлах, селезенке. Их главная функция – фагоцитоз. Лимфоциты – небольшие клетки, которые делятся на три вида (В-, Т, 0-лимфоциты), каждый из которых выполняет свою функцию. Эти клетки вырабатывают антитела, интерфероны, факторы активации макрофагов, убивают раковые клетки.

    Тромбоциты

    Небольшие безъядерные бесцветные пластинки, которые представляют собой фрагменты клеток мегакариоцитов, находящихся в костном мозге. Они могут иметь овальную, сферическую, палочкообразную форму. Продолжительность жизни – около десяти дней. Главная функция – участие в процессе свертывания крови. Тромбоциты выделяют вещества, принимающие участие в цепи реакций, которые запускаются при повреждении кровяного сосуда. В результате белок фибриноген превращается в нерастворимые нити фибрина, в которых запутываются элементы крови и образуется тромб.

    Функции крови

    В том, что кровь необходима организму, вряд ли кто сомневается, а вот зачем она нужна, ответить, возможно, смогут не все. Эта жидкая ткань выполняет несколько функций, среди которых:

    1. Защитная . Главную роль в защите организма от инфекций и повреждений играют лейкоциты, а именно нейтрофилы и моноциты. Они устремляются и скапливаются в месте повреждения. Главная их назначение фагоцитоз, то есть поглощение микроорганизмов. Нейтрофилы относятся к микрофагам, а моноциты – к макрофагам. Другие – лимфоциты – вырабатывают против вредных агентов антитела. Кроме этого, лейкоциты участвуют в удалении из организма поврежденных и мертвых тканей.
    2. Транспортная. Кровоснабжение оказывает влияние практически на все процессы, происходящие в организме, в том числе наиболее важные – дыхание и пищеварение. С помощью крови осуществляется перенос кислорода от легких к тканям и углекислого газа от тканей к легким, органических веществ от кишечника к клеткам, конечных продуктов, которые затем выводятся почками, транспортировка гормонов и других биоактивных веществ.
    3. Регуляция температуры . Кровь нужна человеку для поддержания постоянной температуры тела, норма которой находится в очень узком диапазоне – около 37°C.

    Заключение

    Кровь – это одна из тканей организма, имеющая определенный состав и выполняющая целый ряд важнейших функций. Для нормальной жизнедеятельности необходимо, чтобы все компоненты находились в крови в оптимальном соотношении. Изменения в составе крови, обнаруженные во время анализа, дают возможность выявить патологию на раннем этапе.

    В соответствии с логической последовательностью первых трех ошибок Старой Физиологии, следующей является проблема состава человеческой крови - не только для того, потому что так должно быть но как “научная экспертиза”. Потому что эта ошибка является настолько большой, что граничит с безумием.

    Проблем вот в чем: белые частицы крови (лейкоциты) - это живые клетки жизненной важности, призванные защитить и поддержать жизнь, разрушить микробы болезни, и иммунизировать тело против лихорадки, инфекции, и т. д., как преподают стандартные доктрины физиологии и патологии?

    Или они как раз наоборот - мусор, разложившиеся, неусвоенные, непригодные вещества пищи, слизь, болезнетворный микроорганизм, как д-р Thos. Powell называет их? Трудно перевариваемые человеческим телом, неестественные и поэтому не ассимилируемые вообще? Являются ли они фактически отходами высокобелковых и крахмалистых продуктов, которыми среднестатистический смешивающий все блюдоман западной цивилизации наполняет свой желудок три раза в день? Представляют ли они из себя то, что я называю "слизью" как основополагающую причину всех болезней?

    Патология доказывает, что количество лейкоцитов возрастает в случае болезни, а физиология утверждает, что их количество увеличивается во время пищеварения в здоровом теле, и что они происходят от богатых белком продуктов.

    Это учение абсолютно правильно, и является логическим последствием ошибки высокобелковых продуктов.

    Медицинская "наука" признает и должна признавать это как нормальное условие здоровья, и что не больной человек должен иметь в кровообращении эти белые частицы, потому что они есть у всех. Нет ни одного человека в западной цивилизации, тело которой непрерывно не наполнялось бы, начиная с детства, коровьим молоком, мясом и яйцами, картофелем и зерновыми продуктами. Ни одного человека сегодня без слизи!

    В моей первой опубликованной статье прозвучала гигантская идея, провозглашавшая что белая раса является неестественной, больной, патологической. Во-первых: не хватает цветного пигмента кожи - из-за нехватки окрашивающих минеральных солей; во-вторых: кровь непрерывно переполняется белыми частицами крови, слизью, отходами белого цвета - поэтому и общий белый вид всего тела.

    Поры кожи белого человека забиты белой сухой слизью - его вся система тканей(изнури и снаружи) заполнена нею. Неудивительно, что он выглядит белым, бледным и анемичным. Все знают, что крайний случай бледности - "плохой признак." Когда я появился со своим другом в на пляже, живя в течение нескольких предыдущих месяцев на бесслизистой диете и принимая солнечные ванны, то мы были похожи на индусов, и люди полагали, что мы принадлежим к другой расе. Это состояние, несомненно, имело место из-за большого количества красных частиц крови(эритроцитов) и большой нехватки белых частиц крови. Я сутра могу заметить некоторую бледность на своем, если до этого съел один кусок хлеба.

    Эта книга - не место, чтобы поднять все аргументы против ужасной ошибки о природе и "функциях" лейкоцитов, в которые медицинская "наука" так сильно верит. Любой человек, желающий реального научного доказательства, может прочитать книгу д-ра Thos. Powell "Fundamentals and Requirements of Health and Disease," изданную в 1909 году - спустя несколько лет после того, как моя "теория слизи" была опубликована в Европе, и позже переведена на английский язык в 1913 как "Rational Fasting and Regeneration Diet". Ни один из нас ничего не знал относительно публикаций друг-друга. Д-р Powell утверждает в принципе то же самое, что и я, о причинах всех болезней, белых частицах и медицинских ошибках. Единственное различие - то, что он называет "Патогеном", "Болезнетворным микроорганизмом", я называю "Слизью".

    Однако в методах элиминации и диеты, я принципиально и полностью от него отличаюсь.

    Но даже в составе эритроцитов, плазмы крови вообще, сыворотки крови и так называемого гемоглобина, медицинская "наука" несовершенна.

    Два важных факта, которые нам необходимо знать:

    1) Железо в крови намного более важно и жизненно необходимо.

    2) Присутствие сахара в крови. Великий эксперт физиологической химии и основатель теории минеральных солей Hensel, утверждал в своей книге "Жизнь": "Железо является химически скрытым в нашей крови." Доктора не могли найти его из-за нехватки знаний по химии. На странице 36 той же самой книги он говорит: "В нашей крови белок - комбинация сахарного материала и окиси железа, но ни сахар, ни железо не могут быть обнаружены обычными химическими тестами. Белок крови сначала должен быть сожжен, чтобы тест показал нужные результаты."

    Я думаю, что правда в следующем: красный цвет крови(самое характерное её качество) происходит из-за окиси железа - ржавчины! Поэтому очевидно насколько важно присутствие железа в крови. Далее, сахарный материал имеет высокое значение не только из-за своего питательного качества. Он - основная часть в нормальном гемоглобине крови, который в идеальном своем состоянии становится твердым и вязким, как желатин, как только он приходит в соприкосновение с атмосферным воздухом с целью закрыть рану. Прочитайте в моей книге "Rational Fasting" мой тест не кровоточащей, мгновенно заживляющейся раны, без выделения гноя и слизи, без боли и воспаления.

    Одна правда относительно состояния человеческой крови, найденная докторами - то, что кислотность - признак болезни. Это, не столь удивительно и всегда случается с человеком, смешивающим пищу, когда он ежедневно заполняет желудок мясом, крахмалом, конфетами, фруктами, и т. д. одновременно.

    Проведите личный тест, если Вы полностью не убеждены. Съешьте обычный обед и спустя один час после этого извлеките его из Вашего желудка - у Вас будет кислая ферментирующая смесь ужасного аромата, напоминающая помои. Если её скормить свиньям, то она даже этих сильных животных медленно сделает больными.

    Или, если Вы не настолько смелые, попробуйте следующий эксперимент: в следующий раз, когда вы сядете за стол, поставьте блюда для ещё одного гостя. Поместите его часть в кастрюлю, используя те же количества и ту же пищу, которую Вы едите и пьете сами. Хорошо перемешайте. Затем поставьте кастрюлю в духовку, нагретую до температуры тела(36–38 градусов Цельсия) не меньше, чем на 30 минут, достаньте, накройте крышкой и оставьте на ночь. Когда Вы утром снимите крышку, Вас ждет большое удивление.

    Текст статьи

    Бочаров Михаил Евгеньевич,Кандидат технических наук, заведующийкафедрой «Электроснабжение сельского хозяйства и теоретических основ электротехники», ФГБОУ ВПО "Волгоградский государственный аграрный университет", г. Волгоград[email protected]

    Электрическая составляющая кровообращения

    Аннотация.Статья в популярной форме представляет гипотезу механизма кровообращения, в котором основной энергетической составляющей являются силы взаимодействия электрических зарядов. На основе личных исследований автора и анализа известных фактов рассмотрены «электрические» принципы кровообращения и пограничные состояния, такие как, повреждение стенки сосуда или образование тромба. В статье затронуты вопросы взаимодействия электрических зарядов внутри других органов и тканей организма. Работа будет интересна широкому кругу специалистов интересующихся биологией и медициной.Ключевые слова:электростатический коллоид, электропульсация, электрогенез, электрозаряд эритроцита.

    Окружающая живой организм природа (земля и воздух) имеет исторически сложившийся отрицательный электрический заряд. В силу эволюционного развития «…все жидкие среды организма (протоплазма клеток, межклеточная жидкость, лимфа и кровь) являются электростатическими коллоидами, т.к. их частицы имеют отрицательный заряд. Такой же заряд имеют плазма и все форменные элементы крови (эритроциты, лейкоциты и тромбоциты), что создает электрораспор (электроотталкивание изза одноименности зарядов) между ними и препятствует их сталкиванию друг с другом и агрегации (слипаемости), а это создает оптимальные условия для циркуляции крови» . Аналогичный механизм электроотталкивания частиц крови рассмотрен и в работе А.А.Микулина .Гипотеза «Электрические процессы внутри организма» основана на предположении, что взаимным отталкиванием электрическая составляющая процесса кровообращения не заканчивается, при этомсуществующая гидродинамическая модель не в полной мере объясняет механизм кровообращения. Прототипом гипотезы послужили исследования авторапо изучению прохождения ионизированного потока воздуха по воздуховодам. Металлическая поверхность воздуховода поглощает ионы и полностью деионизирует воздушный потокуже через несколько метров. Подавая на металлическую и даже заземленную поверхность воздуховода дополнительный одноименный потенциал был получен эффект сохранения уровня ионизированности воздушного потока .Получаемый эффект объясняется тем, что придание внутренней поверхности воздуховода одноименного с ионным потоком потенциала обеспечивает отталкивание имеющих электрический заряд частиц потока от стенок воздуховода, в соответствии с законом Кулона. Между внутренней поверхностью воздуховода и ионами потока создается деионизированный слой газа, благодаря которому ионный поток электрически изолируется от воздуховода и стабилизируется вдоль оси. Проведем аналогию с системой кровоснабжения.Предположим, что в качестве воздуховодов мы имеем сосуды, по которым циркулирует кровь, состоящая на 92% из воды и содержащая различные элементы, а сами стенки сосудов и элементы крови (преимущественно) имеют отрицательный электрический заряд. Это позволяет элементам крови отталкиваться не только друг от друга, но и от отрицательно заряженной стенки сосуда, создавая деионизированный слой. Этот слой не содержит отрицательно заряженных частиц и обеспечивает электрораспор, тонус сосудов и «смазку», которая позволяет снижать трение и улучшать кровоток. Медицине известны факторы, обеспечивающие движение крови по сосудам. Но, все они вызывают большое сомнение вих энергетических возможностях для обеспечения процесса кровообращения (преодоление трения) и обеспечения капиллярного кровотока (в особенности в мозге). Попробуем добавить недостающее звено, а именно принцип электродинамического продвижения крови за счетклеточной энергии сосудов и электростатическую «смазку», уменьшающую трение частиц крови о стенки сосуда за счет упомянутого принципа действия деионизированного слоя.Рассмотрев единичный сосуд, можно легко представить работу мышц сосуда по проталкиванию крови или картину соотношения давлений, обеспечивающих движение жидкости в капиллярах, межклеточном пространстве и лимфатических сосудах. Принцип единичного сосуда, как правило, переноситься на любой орган, который в своем объеме имеет множество разнонаправленных капилляров, и кровь по которым проходит в разных направлениях. Даже не смотря на слаженную работу сфинктеров предкапиллярных артериол, в такой капиллярной сети присутствуют все виды капиллярного кровотока: от равномернобыстрого до обратного тока. А это, согласно законам гидродинамики, ‬хаос, и неминуемо должно привести к остановке всякого кровотока. Но, ведь на практике этого не происходит. Так широко используемая закономерность про количество протекающей по сосудам крови и скорости её движения в зависимости от разности давления в начале и конце сосуда конечно верна, но только если представить, что сосуд водопроводная труба с жесткими и неподвижными стенками, а разница давлений достаточно высока. В действительности, разница давлений в отдельно взятом сосуде невелика и, кроме того, эластичность стенок или работа мышц полностью нивелируют эту разницу даже в артериях, не говоря уже о капиллярах. Кроме того, факт именно сгибания или даже скручивания, а не «сминания», эритроцитов (7,58,3 мкм) в трубочкупри прохождении по узким капиллярам (47 мкм) с точки зрения гидродинамики вообще необъясним. Скорее можно предположить, что избыточное давление утрамбует эритроциты на сужении сосуда и совсем перекроет кровоток. А теперь давайте представим, что по сосудудвижется кровь, отдельные частички, которой имеют определенный электрический заряд, а сам сосуд окружен поверхностью (базальная мембрана, один из слоев сосуда или окружающие сосуд ткани) имеющей аналогичный по знаку заряд. Этим обеспечивается электрораспор, а заряженные частички крови концентрируются вдоль оси сосуда, чем снижается трение о внутреннюю поверхность сосуда. Кроме того, наличие электрических зарядов у частичек крови предотвращает их слипание и трение между собой и сосудом и соответственно образование тромбов. При этом просвет сосуда, а особенно капилляра, поддерживается в максимально открытом состоянии за счет электрораспора, без дополнительного мышечного напряжения, например, в капиллярах, не имеющих мышц, а также в капиллярах снабжающих стенки средних и крупных артерий и вен кровью. Это особенно важно для сосудосодержащих тканей подверженных механическим воздействиям. Например, при внешних (тесная одежда или различные сдавливания) или внутренних(работа скелетных мышц) давлениях на сосуды, согласно только «гидравлической» теории неминуемо приведет к прекращению или значительному снижению кровотока, чего на самом деле не наблюдается (кроме усилий равных кровоостанавливающемужгуту). Давайте, сравним две силы давления, которые оказывают на руку кровоостанавливающий жгут и манжета устройства по методу измерения кровяного давления основанного на акустической регистрации звуковКороткова. В первом случае кровоснабжение ниже жгута отсутствует полностью, а в случае с манжетой тонометра (сфигмоманометра) кровоснабжение отсутствует в полной мере только в крупных венах и артериях. Соответственно и усилия, оказываемые на руку жгутом и манжетой тонометра различно. Так почему же чтобы остановить капиллярное кровообращение, всетаки необходима сила жгута? Ответ возможно прост. Силы электростатического распора действуют на малых расстояниях и более заметны в сосудах малого сечения ‬в капиллярах. Силе сжатия манжеты тонометра сопротивляется в основном, только гидравлическое давление кровии в основном в крупных сосудах. Это давление меньше чем электрораспор. Для преодоления электрораспора, свойственного больше капиллярам, требуется усилие кровоостанавливающего жгута. Вернемся к факту скручивания эритроцитов при прохождении по капиллярам, и опишем механизм «скручивания» исходя из сил взаимодействия электрических зарядов. Предположим, что при снижении диаметра капилляра до размеров эритроцита каждая из точек поверхности эритроцита будет отталкиваться от внутренних одноименно заряженных стенок. Появятся силы направленные на изгибание приводящие к скручиванию.Причем двояковогнутая форма имеющего электрический заряд эритроцита как нельзя лучше подходит для его электростатического скручивания. Вполне вероятно, что поверхностный электрический заряд эритроцита при этом перераспределяется. Утолщенный край при скручивании располагается ближе к центральной впадине, а обратная зеркальность поверхностей краев и центральной части обеспечивает равноудаленность, что означает равное по силе взаимоотталкивание скрученной поверхности эритроцита. Электростатическое влияние на движение крови увеличивается с уменьшением диаметра сосуда. Электродинамическое продвижение крови по сосудам, основано на изменении величины электрического заряда вдоль сосуда в соответствии с пульсовой волной, что является аналогом мышечного вазомоторного воздействия или потенциала действия связанного с активацией и инактивацией ионных мембранных каналов. Кроме того, наверняка часть проблем электродинамического движения крови в мышечных тканях «возложено» на явление пъезоэффекта, а такжена соматическую нервную систему, с использованием касательных синапсов, организующих в сосудах «волну» потенциала действия, по типу возбуждения распространяемого по нервному волокну или согласно теории «местных токов». Каки электростатика, электродинамическое воздействие оказывает более заметное влияние на периферическую систему кровоснабжения. Действие электрического поля на частички крови, имеющие электрический заряд, аналогично работе устройства под названием линейный электродвигатель, где движение электромагнитного поля по линейному статору перемещает вдоль его корпуса ротор. Причем «бегущее» вдоль сосуда кольцевое электрическое поле оказывает механическое действие не только на электрически заряженные, но и на нейтральные частицы, поляризуя их и вовлекая в движение. Для капиллярного продвижения крови по сосудам может играть роль наклона в разные стороны (по направлению кровотока и против него) расположенных в мембранах клеток стенки капилляра натриевых и калиевых ионных каналов. Но, если принципы электродинамики потенциала в клетках (электрогенез) уже достаточно хорошо изучены, то механизм образования «бегущего» вдоль сосуда электрического поля более сложен и не однозначен. Иногда его нарушения диагностируются как «дефицит пульса». Наряду с известными способами электрическую «бегущую» пульсовую волну сосуда может организовывать и механический градиент потенциала пульсирующей крови, воздействуя непосредственно на потенциалочувствительные ионные каналы стенок. Аналогичные процессы известны на примерах механочувствительных ионных каналов волосковых клеток слухового аппарата и ионных теорий возбуждения (воснове которых лежит предположение отом, чтопричиной возникновения возбуждения является изменение концентрации ионоввнутри ивнеклетки). Процесс организации кровотока в этом случае будет следующим ‬механическийимпульс крови (из более крупного сосуда) запускает механизм, который провоцирует изменение мембранного потенциала (за счет внутренней энергии клетки), а последовательная электропульсация мембран клеток вдоль капилляра обеспечивает и усиливает кровоток по капилляру. Так механическое давление пульсации поступающей крови провоцирует ответную реакцию эндотелиальных клеток по электропульсированию потенциала своей мембраны, обращенной внутрь сосуда. И именно участие внутриклеточной энергии объясняет незначительные энергетические затраты на организацию кровотока на уровне капиллярного кровообращения, в особенности для капилляров безмышечного типа. Получается, что основные энергозатраты на организацию кровотока перекладываются на внутриклеточную энергетику, а не наразницу давлений в конце и начале сосуда или другие факторы известные, как факторы обеспечивающие движение крови. Этот способ дополняет механизмы электроосмоса, электрогенезаи внешнего «бегущего» электрического потенциала, организованного сердцем и нервной системой, для сосудов, не имеющих мускульных слоев и лишенных непосредственного контакта с сосудосуживающими и сосудорасширяющими нервами, и может быть определен как ‬электротаксис крови.Не исключена возможность и обратной связи, а именно спровоцированная пульсацией крови электропульсация клеток сосуда преодолевая потенциальный порог своих внешних (от потока крови) мембран, провоцирует последовательные дополнительные (кроме непосредственного воздействия через сосудорегулирующие нервы) сокращения мышц капилляра (микровибрацию, аналог вибрационная гипотеза Аринчина ). Мышечное сокращение происходит естественно с небольшим временным отставанием от электропульсации, что служит дополнительным продавливающим (скорее додавливающим) фактором движения крови.

    По всей видимости, именно этот процесс заметен на добавочной дикротической волне сфигмограммы периферического пульса. Тогда становится ясен процесс взаиморегуляции. Чем сильнее первичный механический импульс с более крупной артерии (например, при резком увеличении нагрузки), чем сильнее вторичный потенциал электропульсации и последующего за ним мышечного сокращения. Здесь необходимо еще раз вернуться к факту сгибания или сворачивания эритроцита при прохождении в тонком капилляре. Тогда можно предположить,что механическое давление края эритроцита при касании стенок вызывает дополнительный ответный отталкивающий электрический импульс внутренней поверхности сосуда(пьезоэффект), направленный на «электростатическое» сгибание или скручивание, а величина этого ответного импульса будет зависеть от силы механического давления эритроцита. Более сложные процессы, с точки зрения взаимодействия электрических зарядов, происходят в поврежденном сосуде при гемостазе с последующим заживлением и регенерацией тканей. Повреждение стенки, а тем более полный разрыв сосуда приводит к нарушению эквипотенциальной поверхности внутренней поверхности его стенок, что естественно резко снижает электрораспор просвета сосуда и приводит к электростатическому притяжению поврежденных его краев. Так как для организации нормального кровообращения созданный отрицательный заряд стенок сосуда (внутренних мембран эндотельных клеток) за счет поляризации обеспечивает нейтральный или даже положительный заряд на внешней стороне клеток эндотелия или базальной мембраны. Разрыв или повреждение сосуда приводит к появлению кулоновских сил взаимодействия между отрицательно заряженными частицами крови (в том числе и тромбоцитами), краем разрыва в эндотелии или положительно заряженными окружающими тканями (т.к. положительный заряд имеют внешние слои кровеносного сосуда). Т.е. возможно,что электрические притяжение тканей имеющих различный электрический заряд «стягивает» края разорванного сосуда. Вероятно, это проявление электротаксиса крови провоцирует спазм сосуда (ангиоспазм).Несмотря на выше приведенные утверждения об общей электроотрицательности крови, фактом остается то, что в крови, а также в отдельных органах, есть и в большом количестве положительные ионы. Но согласно тому, же закону Кулона, единичный положительный ион, находясь внутри отрицательно заряженной окружности (возьмемсрез сосуда малой толщины) будет испытывать притяжение к каждой точке на его внутренней поверхности, что уравновесит силы притяжения от каждой точки окружности. При наличии внутри уже сосуда сконцентрированного вдоль оси отрицательного потока ионов, положительные ионы будут располагаться как внутри потока между отрицательными ионами, так и внутри деионизированного (от отрицательных ионов) слоя плазмы. Ионами в данном случае, также являются все частицы, имеющие определенный электрический заряд (за счет присоединенного или отнятого электрона) или поверхностный электрический заряд нейтральной частицы (за счет объемного перераспределения электрических зарядов). Конечно же, при столкновениях происходит рекомбинация зарядов путем передачи электрона. Кроме того, положительные ионы могут сохранять свой заряд, находясь внутри различных объемно поляризованных молекул, например, того же гемоглобина. Приведенные механизмы достаточно условны, но, тем не менее, благодаря ним положительные ионы сосуществуют и играют свою роль в кровотоке наряду с отрицательными ионами. Это позволяет объяснить общую отрицательность организма и одновременность сосуществования в нем отрицательных и положительно электрически заряженных частиц, что и является принципом электробаланса организма. Так внутри некоторых органов в силу выполняемых ими функций, электроотрицательность может быть ослаблена или полностью отсутствовать, а сам орган или его часть может иметь даже положительный заряд. По всей видимости, это сердце, легкие, потовые и сальные железы, почки, мочевой пузырь и ЖКТ, а также венозная система, в которой описываемые выше механизм кровообращения может на отдельных этапах происходить с обратной полярностью.

    Условия принятия или отдачи электрона для ионов Na+, K+, Ca2+ и Mg2+ известны, а вот их направление и интенсивность в организме и его органах могут регулироваться с помощью различных механизмов, в том числе и вегетативной нервной системой. Процесс отдачи электрона (ионизация) может происходить внутри органа, которому необходимы определенные положительные ионы. Например, для деятельности сердца необходимы ионы калия и магния. Вполне вероятно, что атомарный (или в виде доступного для ионизации соединения) калий и магний, попадая внутрь сердца (имеющего положительный электрический заряд)ионизируется, отдавая электрон. Чем больше положительный заряд сердца, тем больше ионов калия и магния может «выделиться» из проходящей через него крови. А что такое увеличение положительного заряда в сердце? Это по какойто причине «попытка» создания «электрического тромба». Т.е. сердечной мышце для преодоления нагрузки необходимы больше K+ и Mg2+ и концентрация этих ионов тут же увеличивается пропорционально увеличению положительного электрического заряда сердца. Таким образом, локальное изменение напряженности электрического поля в органе или в сосуде позволяет «выделять» путем ионизации из крови необходимое количество нужных органу ионов. Особенностью работы сердца является замкнутый электрический принцип работы организованный локализованными электрическими импульсами. Поэтому особенно важно внешне влияние посторонних (для сердца) электрических полей и зарядов. Так действие дефибриллятора основано на деполяризации мембран мышечных клеток (сарколеммы) обеспечивающих при последующих поляризациях их синхронную работу. Иными словами дефибриллятор устраняет «электрический тромб» (локализированное увеличение положительного электрического заряда в области грудном отделе нарушающее установившийся электрообмен между сердцем и легкими, вплоть до остановки сердца) вразличных степенях его проявления, от нарушения ритма, до остановки сердца. Сосуды организма и кровь в большинстве случаев электроотрицательней остальных тканей организма. Но есть и исключения, например, органы выделения, в которых кровь и сосуды могут быть нейтральны или иметь положительный заряд особенно там, где организм сбрасывает положительное «электричество». Такой «сброс» происходит с помощью придания положительного заряда выделяемым из организма веществам. Например, выдыхается положительно заряженный углекислый газ, почки удаляют не только продукты метаболизма и лишнюю воду, но и выделяют положительное «электричество» удаляя Н+ понижая рН. Подтверждением нейтрального или даже положительного электрического заряда почек, может служить применяемый почками способ прокачки крови по капиллярам нефрона, а именно использование своеобразного «ресивера» в виде боуменовой капсулы с различными диаметрами приносящей и выносящей клубочковых артериол. В этом случае почкой может, и не применятся (в виду ее отсутствии) электродинамическая (любого знака) поддержка кровотока, так необходимая для необходимого продвижения крови используется дополнительная гидравлическая поддержка. Такая поддержка обеспечивает локальное повышение давления крови и тем самым обеспечивает кровоток.

    Приведенный механизм электростатического и электродинамического действия электрических зарядов на сердечнососудистую систему позволяет по иному представить некоторые известные процессы в кровообращении.

    Ссылки на источники1. Скипетров, В.П. Лечение аэроионами кислорода / В.П.Скипетров, Н.Н.Беспалов, А.В.Зорькина. ‬Саранск: «СВМО», 2001. ‬70 с. 2. Микулин, А.А. Активное долголетие / А.А.Микулин. ‬М.: «Физкультура и спорт», 1977. ‬112 с.3. Бочаров,М.Е. Электрические процессы внутри организма: Практическая гипотеза/ М.Е.Бочаров.‬Saarbrucken, Deutschland: LAPLAMBERT, 2015. ‬102 с.4. Бочаров, М.Е. Повышение эффективности аэроионизации птичников с клеточным содержанием: дис. канд. техн. наук: 05.20.02. / Бочаров Михаил Евгеньевич. ‬Москва, 2008. ‬236 с.5. Аринчин, Н.И. Микронасосная деятельность скелетных мышц при их растяжении / Н.И.Аринчин, Г.Ф.Борисевич. ‬Минск: «Наука и техника», 1986. ‬111 с.

    Большинство из нас слышали о том, что при переливании крови медики учитывают резус-фактор пациента и его группу крови, эти признаки являются врожденными, поэтому обладателям «редкой» крови тяжело найти донора. Однако не многие знают, что традиционная группа крови и резус-фактор далеко не являются полной характеристикой крови каждого отдельного человека. Всего на сегодняшний день открыто более 15 систем групп крови, определяющих ее уникальность. Носителями этих свойств являются особые вещества — антигены, находящиеся на поверхности эритроцитов — красных кровяных телец, которые обеспечивают цвет крови. Они же переносят в нашем организме кислород и отводят выработанный углекислый газ.

    Американским ученым удалось создать частицы, имитирующие ключевые механические свойства красных кровяных телец. Таким образом,

    медики прошли еще один шаг на пути к созданию синтетической крови.

    Исследование, опубликованное в Proceedings of the National Academy of Sciences , посвящено созданию синтетических эритроцитов и их использованию в лечении тяжелых заболеваний, в том числе рака.

    Основной функцией эритроцитов является перенос кислорода из легких к тканям тела и транспорт диоксида углерода (CO 2) в обратном направлении. Кроме участия в процессе дыхания они участвуют в регулировке кислотно-щелочного баланса, поглощают из плазмы крови аминокислоты, липиды и переносят их к тканям.

    У млекопитающих зрелые эритроциты лишены ядер, внутренних мембран и большинства «внутренних органов» (их называют органеллами), присущих обычным клеткам. Обычно эритроциты млекопитающих имеют форму двояковогнутого диска и содержат в основном дыхательный пигмент гемоглобин, обусловливающий красный цвет крови. Антигены поверхности эритроцитов определяют группу крови человека, резус-фактор и другие факторы систем групп крови (их известно более 15). При переливании несочетаемых групп крови существует опасность склеивания или разрушения эриритроцитов, обусловленная антигенами.

    Исследователи Университета Северной Каролины использовали специальную технологию «изготовления» эритроцитов PRINT (Particle Replication in Non-wetting Templates — репликация частиц на несмачивающихся темплатах), которая позволила создать очень мягкие частицы гидрогеля, повторяющие размер, форму и степень гибкости эритроцитов.

    Эти частицы успешно циркулировали в крови вместе с «родными» эритроцитами в течение долгого промежутка времени.

    Специальный материал, из которого состоит полученный гидрогель, позволяет варьировать вязкость и плотность системы. Технология PRINT, разработанная в лаборатории одного из руководителей работы профессора Джозефа де Симоне, «штампует» наночастицы заданного размера, формы и химического состава. Используя эти разработки, биологи «отлили» из гидрогеля диски, имитирующие эритроциты (каждый - около 5 мкм в диаметре).

    Для выяснения необходимого уровня вязкости материала частиц ученые проводили эксперименты по циркуляции частиц в крови на мышах. Самые гибкие частицы, как оказалось, оставались в крови без существенного отфильтровывания органами в 30 раз дольше, чем самые жесткие: период полувыведения для них составлял 93.29 против 2.88 часов соответственно. Кроме того, они выводились из организма разными способами: твердые частицы оседали в легких, а мягкие удалялись через селезенку - именно там, где удалятся настоящие эритроциты. Таким образом, «искусственные клетки» частично прошли биологическую проверку — испытание на живых организмах. Ранее «синтетическая кровь» воспроизводила лишь химическое поведение настоящей.

    Ученые подчеркивают, что

    пока удалось воспроизвести лишь механические свойства эритроцитов.

    Их «не научили» переносить кислород или лекарства.

    Однако воспроизведение степени гибкости частиц — важная веха в создании искусственных клеток. Дело в том, что механические свойства эритроцитов принципиально важны для успешного выполнения их функций в организме. Именно гибкость позволяет им проникать в микроскопические поры и сосуды. Форма двояковогнутого диска и способность к деформации обеспечивает прохождение эритроцитов через узкие просветы капилляров. В капиллярах они движутся со скоростью 2 сантиметра в минуту, что дает им время передать кислород от гемоглобина к миоглобину. Миоглобин действует как посредник, принимая кислород у гемоглобина в крови и передавая его мышечным клеткам. В течение 120-дневного жизненного цикла естественные эритроциты постепенно теряют способность к деформации и в конце концов отфильтровываются из системы кровообращения, так как теряют способность проходить в узкие сосуды. Все предыдущие попытки создания искусственных эритроцитов были малоуспешными — искусственные образования очень быстро фильтровались системой как недостаточно гибкие.

    Варьирование степени твердости-мягкости искусственных кровяных клеток открывает новые возможности для лечения рака. Дело в том, что

    раковые клетки мягче здоровых клеток, поэтому они легче проникают через поры мембран, распространяя заболевание.

    Если частицы-переносчики лекарства будут такими же мягкими, они смогут дольше циркулировать в кровеносной системе и более качественно доставлять лекарство к вредоносным клеткам.

    «Создание частиц, способных долгое время циркулировать в кровеносной системе, изначально было одной из основных целей работ по направленной доставке лекарств. Достижение хорошей способности к деформации у искусственных частиц - это еще не конец пути, есть и другие жизненно необходимые свойства, но мы уверены, что наша работа способна изменить будущее наномедицины», — подытожил профессор де Симоне.