Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Имбирный чай — рецепты приготовления
  • Как приготовить тортилью
  • Критерии и порядок канонизации святых в русской православной церкви Начало Бытия Церкви, Ее рост и Ее назначение
  • Имя Серафима в православном календаре (Святцах)
  • Линза собирающая предмет. Линза. Формула тонкой линзы (Зеленин С.В.)

    Линза собирающая предмет. Линза. Формула тонкой линзы (Зеленин С.В.)

    Изображения:

    1. Действительные - те изображения, которые мы получаем в результате пересечения лучей, прошедших через линзу. Они получаются в собирающей линзе;

    2. Мнимые - изображения, образуемые расходящимися пучками, лучи которых на самом деле не пересекаются между собой, а пересекаются их продолжения, проведенные в обратном направлении.

    Собирающая линза может создавать как действительное, так и мнимое изображение.

    Рассеивающая линза создает только мнимое изображение.

    Собирающая линза

    Чтобы построить изображение предмета, нужно пустить два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы, он пройдет, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета.

    В результате построения получается уменьшенное, перевернутое, действительное изображение (см. Рис. 1).

    Рис. 1. Если предмет располагается за двойным фокусом

    Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы, он пройдет через линзу, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета.

    Точно так же строится изображение нижней точки предмета.

    В результате построения получается изображение, высота которого совпадает с высотой предмета. Изображение является перевернутым и действительным (Рис. 2).

    Рис. 2. Если предмет располагается в точке двойного фокуса

    Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы. Через линзу он проходит, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета.

    Точно так же строится изображение нижней точки предмета.

    В результате построения получается увеличенное, перевернутое, действительное изображение (см. Рис. 3).

    Рис. 3. Если предмет располагается в пространстве между фокусом и двойным фокусом

    Так устроен проекционный аппарат. Кадр киноленты располагается вблизи фокуса, тем самым получается большое увеличение.

    Вывод: по мере приближения предмета к линзе изменяется размер изображения.

    Когда предмет располагается далеко от линзы - изображение уменьшенное. При приближении предмета изображение увеличивается. Максимальным изображение будет тогда, когда предмет находится вблизи фокуса линзы.

    Предмет не создаст никакого изображения (изображение на бесконечности). Так как лучи, попадая на линзу, преломляются и идут параллельно друг другу (см. Рис. 4).

    Рис. 4. Если предмет находится в фокальной плоскости

    5. Если предмет располагается между линзой и фокусом

    Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломится и пройдет через точку фокуса. Проходя через линзу, лучи расходятся. Поэтому изображение будет сформировано с той же стороны, что и сам предмет, на пересечении не самих линий, а их продолжений.

    В результате построения получается увеличенное, прямое, мнимое изображение (см. Рис. 5).

    Рис. 5. Если предмет располагается между линзой и фокусом

    Таким образом устроен микроскоп.

    Вывод(см. Рис. 6):

    Рис. 6. Вывод

    На основе таблицы можно построить графики зависимости изображения от расположения предмета (см. Рис. 7).

    Рис. 7. График зависимости изображения от расположения предмета

    График увеличения (см. Рис. 8).

    Рис. 8. График увеличения

    Построение изображения светящейся точки, которая располагается на главной оптической оси.

    Чтобы построить изображение точки, нужно взять луч и направить его произвольно на линзу. Построить побочную оптическую ось параллельно лучу, проходящую через оптический центр. В том месте, где произойдет пересечение фокальной плоскости и побочной оптической оси, и будет второй фокус. В эту точку пойдет преломленный луч после линзы. На пересечении луча с главной оптической осью получается изображение светящейся точки (см. Рис. 9).

    Рис. 9. График изображения светящейся точки

    Рассеивающая линза

    Предмет располагается перед рассеивающей линзой.

    Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется таким образом, что продолжение этого луча пойдет в фокус. А второй луч, который проходит через оптический центр, пересекает продолжение первого луча в точке А’, - это и будет изображение верхней точки предмета.

    Таким же образом строится изображение нижней точки предмета.

    В результате получается прямое, уменьшенное, мнимое изображение (см. Рис. 10).

    Рис. 10. График рассеивающей линзы

    При перемещении предмета относительно рассеивающей линзы всегда получается прямое, уменьшенное, мнимое изображение.

    1. Igor-krylov.narod.ru ().
    2. Оптика ().
    3. Оптика ().

    Темы кодификатора ЕГЭ: линзы, оптическая сила линзы

    Взгляните ещё раз на рисунки линз из предыдущего листка: эти линзы обладают заметной толщиной и существенной кривизной своих сферических границ. Мы намеренно рисовали такие линзы - чтобы основные закономерности хода световых лучей проявились как можно более чётко.

    Понятие тонкой линзы.

    Теперь, когда эти закономерности достаточно ясны, мы рассмотрим очень полезную идеализацию, которая называется тонкой линзой .
    В качестве примера на рис. 1 приведена двояковыпуклая линза; точки и являются центрами её сферических поверхностей, и - радиусы кривизны этих поверхностей. - главная оптическая ось линзы.

    Так вот, линза считается тонкой, если её толщина очень мала. Нужно, правда, уточнить: мала по сравнению с чем?

    Во-первых, предполагается, что и . Тогда поверхности линзы хоть и будут выпуклыми, но могут восприниматься как "почти плоские". Этот факт нам очень скоро пригодится.
    Во-вторых, , где - характерное расстояние от линзы до интересующего нас предмета. Собственно, лишь в таком случае мы и
    сможем корректно говорить о "расстоянии от предмета до линзы", не уточняя, до какой именно точки линзы берётся это самое расстояние.

    Мы дали определение тонкой линзы, имея в виду двояковыпуклую линзу на рис. 1 . Это определение без каких-либо изменений переносится на все остальные виды линз. Итак: линза является тонкой , если толщина линзы много меньше радиусов кривизны её сферических границ и расстояния от линзы до предмета.

    Условное обозначение тонкой собирающей линзы показано на рис. 2 .

    Условное обозначение тонкой рассеивающей линзы показано на рис. 3 .

    В каждом случае прямая - это главная оптическая ось линзы, а сами точки - её
    фокусы. Оба фокуса тонкой линзы расположены симметрично относительно линзы.

    Оптический центр и фокальная плоскость.

    Точки и , обозначенные на рис. 1 , у тонкой линзы фактически сливаются в одну точку. Это точка на рис. 2 и 3 , называемая оптическим центром линзы. Оптический центр находится на Пересечении линзы с её главной оптической осью.

    Расстояние от оптического центра до фокуса называется фокусным расстоянием линзы. Мы будем обозначать фокусное расстояние буквой . Величина , обратная фокусному расстоянию, есть оптическая сила - линзы:

    Оптическая сила измеряется в диоптриях (дптр). Так, если фокусное расстояние линзы равно 25 см, то её оптическая сила:

    Продолжаем вводить новые понятия. Всякая прямая, проходящая через оптический центр линзы и отличная от главной оптической оси, называется побочной оптической осью . На рис. 4 изображена побочная оптическая ось - прямая .

    Плоскость , проходящая через фокус перпендикулярно главной оптической оси, называется фокальной плоскостью . Фокальная плоскость, таким образом, параллельна плоскости линзы. Имея два фокуса, линза соответственно имеет и две фокальных плоскости, расположенных симметрично относительно линзы.

    Точка , в которой побочная оптическая ось пересекает фокальную плоскость, называется побочным фокусом. Собственно, каждая точка фокальной плоскости (кроме ) есть побочный фокус - мы ведь всегда сможем провести побочную оптическую ось, соединив данную точку с оптическим центром линзы. А сама точка - фокус линзы - в связи с этим называется ещё главным фокусом.

    То, что на рис. 4 изображена собирающая линза, никакой роли не играет. Понятия побочной оптической оси, фокальной плоскости и побочного фокуса совершенно аналогично определяются и для рассеивающей линзы - с заменой на рис. 4 собирающей линзы на рассеивающую.

    Теперь мы переходим к рассмотрению хода лучей в тонких линзах. Мы будем предполагать, что лучи являются параксиальными , то есть образуют достаточно малые углы с главной оптической осью. Если параксиальные лучи исходят из одной точки, то после прохождения линзы преломлённые лучи или их продолжения также пересекаются в одной точке. Поэтому изображения предметов, даваемые линзой, в параксиальных лучах получаются весьма чёткими.

    Ход луча через оптический центр.

    Как мы знаем из предыдущего раздела, луч, идущий вдоль главной оптической оси, не преломляется. В случае тонкой линзы оказывается, что луч, идущий вдоль побочной оптической оси, также не преломляется!

    Объяснить это можно следующим образом. Вблизи оптического центра обе поверхности линзы неотличимы от параллельных плоскостей, и луч в данном случае идёт как будто через плоскопараллельную стеклянную пластинку (рис. 5 ).

    Угол преломления луча равен углу падения преломлённого луча на вторую поверхность. Поэтому второй преломлённый луч выходит из плоскопараллельной пластинки параллельно падающему лучу . Плоскопараллельная пластинка лишь смещает луч, не изменяя его направления, и это смещение тем меньше, чем меньше толщина пластинки.

    Но для тонкой линзы мы можем считать, что эта толщина равна нулю. Тогда точки фактически сольются в одну точку, и луч окажется просто продолжением луча . Вот поэтому и получается, что луч, идущий вдоль побочной оптической оси, не преломляется тонкой линзой (рис. 6 ).

    Это единственное общее свойство собирающих и рассеивающих линз. В остальном ход лучей в них оказывается различным, и дальше нам придётся рассматривать собирающую и рассеивающую линзу по отдельности.

    Ход лучей в собирающей линзе.

    Как мы помним, собирающая линза называется так потому, что световой пучок, параллельный главной оптической оси, после прохождения линзы собирается в её главном фокусе (рис. 7 ).

    Пользуясь обратимостью световых лучей, приходим к следующему выводу: если в главном фокусе собирающей линзы находится точечный источник света, то на выходе из линзы получится световой пучок, параллельный главной оптической оси (рис. 8 ).

    Оказывается, что пучок параллельных лучей, падающих на собирающую линзу наклонно , тоже соберётся в фокусе - но в побочном. Этот побочный фокус отвечает тому лучу, который проходит через оптический центр линзы и не преломляется (рис. 9 ).

    Теперь мы можем сформулировать правила хода лучей в собирающей линзе . Эти правила вытекают из рисунков 6-9 ,


    2. Луч, идущий параллельно главной оптической оси линзы, после преломления пойдёт через главный фокус (рис. 10 ).

    3. Если луч падает на линзу наклонно, то для построения его дальнейшего хода мы проводим побочную оптическую ось, параллельную этому лучу, и находим соответствующий побочный фокус. Вот через этот побочный фокус и пойдёт преломлённый луч (рис. 11 ).

    В частности, если падающий луч проходит через фокус линзы, то после преломления он пойдёт параллельно главной оптической оси.

    Ход лучей в рассеивающей линзе.

    Переходим к рассеивающей линзе. Она преобразует пучок света, параллельный главной оптической оси, в расходящийся пучок, как бы выходящий из главного фокуса (рис. 12 )

    Наблюдая этот расходящийся пучок, мы увидим светящуюся точку, расположенную в фокусе позади линзы.

    Если параллельный пучок падает на линзу наклонно, то после преломления он также станет расходящимся. Продолжения лучей расходящегося пучка соберутся в побочном фокусе , отвечающем тому лучу, который проходит через через оптический центр линзы и не преломляется (рис. 13 ).

    Этот расходящийся пучок создаст у нас иллюзию светящейся точки, расположенной в побочном фокусе за линзой.

    Теперь мы готовы сформулировать правила хода лучей в рассеивающей линзе . Эти правила следуют из рисунков 6, 12 и 13 .

    1. Луч, идущий через оптический центр линзы, не преломляется.
    2. Луч, идущий параллельно главной оптической оси линзы, после преломления начнёт удаляться от главной оптической оси; при этом продолжение преломлённого луча пройдёт через главный фокус (рис. 14 ).

    3. Если луч падает на линзу наклонно, то мы проводим побочную оптическую ось, параллельную этому лучу, и находим соответствующий побочный фокус. Преломлённый луч пойдёт так, словно он исходит из этого побочного фокуса (рис. 15 ).

    Пользуясь правилами хода лучей 1–3 для собирающей и рассеивающей линзы, мы теперь научимся самому главному - строить изображения предметов, даваемые линзами.

    Реферат на тему:

    Линза



    План:

      Введение
    • 1 История
    • 2 Характеристики простых линз
    • 3 Ход лучей в тонкой линзе
    • 4 Ход лучей в системе линз
    • 5 Построение изображения тонкой собирающей линзой
    • 6 Формула тонкой линзы
    • 7 Масштаб изображения
    • 8 Расчёт фокусного расстояния и оптической силы линзы
    • 9 Комбинация нескольких линз (центрированная система)
    • 10 Недостатки простой линзы
    • 11 Линзы со специальными свойствами
      • 11.1 Линзы из органических полимеров
      • 11.2 Линзы из кварца
      • 11.3 Линзы из кремния
    • 12 Применение линз
    • Примечания
      Литература

    Введение

    Плоско-выпуклая линза

    Линза (нем. Linse , от лат. lens - чечевица) - деталь из оптически прозрачного однородного материала, ограниченная двумя полированными преломляющими поверхностями вращения, например, сферическими или плоской и сферической. В настоящее время всё чаще применяются и «асферические линзы», форма поверхности которых отличается от сферы. В качестве материала линз обычно используются оптические материалы, такие как стекло, оптическое стекло, оптически прозрачные пластмассы и другие материалы.

    Линзами также называют и другие оптические приборы и явления, которые создают сходный оптический эффект, не обладая указанными внешними характеристиками. Например:

    • Плоские «линзы», изготовленные из материала с переменным коэффициентом преломления, изменяющимся в зависимости от расстояния от центра
    • линзы Френеля
    • зонная пластинка Френеля, использующая явление дифракции
    • «линзы» воздуха в атмосфере - неоднородность свойств, в частности, коэффициента преломления (проявляются в виде мерцания изображения звёзд в ночном небе).
    • Гравитационная линза - наблюдаемый на межгалактических расстояниях эффект отклонения электромагнитных волн массивными объектами.
    • Магнитная линза - устройство, использующее постоянное магнитное поле для фокусирования пучка заряженных частиц (ионов или электронов) и применяющееся в электронных и ионных микроскопах.
    • Изображение линзы, сформированное оптической системой или частью оптической системы. Используется при расчёте сложных оптических систем.

    1. История

    Первое упоминание о линзах можно найти в древнегреческой пьесе Аристофана «Облака» (424 до н. э.), где с помощью выпуклого стекла и солнечного света добывали огонь.

    Из произведений Плиния Старшего (23 - 79) следует, что такой способ разжигания огня был известен и в Римской империи - там также описан, возможно, первый случай применения линз для коррекции зрения - известно, что Нерон смотрел гладиаторские бои через вогнутый изумруд для исправления близорукости.

    Сенека (3 до н. э. - 65) описал увеличительный эффект, который даёт стеклянный шар, заполненный водой.

    Арабский математик Альхазен (965-1038) написал первый значительный трактат по оптике, описывающий, как хрусталик глаза создаёт изображение на сетчатке. Линзы получили широкое использование лишь с появлением очков примерно в 1280-х годах в Италии.

    Сквозь капли дождя, действующие как линзы, видны Золотые Ворота

    Растение, видимое через двояковыпуклую линзу


    2. Характеристики простых линз

    В зависимости от форм различают собирающие (положительные) и рассеивающие (отрицательные) линзы. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих - линзы, края которых толще середины. Следует отметить, что это верно только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например пузырёк воздуха в воде - двояковыпуклая рассеивающая линза.

    Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), или фокусным расстоянием.

    Для построения оптических приборов с исправленной оптической аберрацией (прежде всего - хроматической, обусловленной дисперсией света, - ахроматы и апохроматы) важны и иные свойства линз/их материалов, например, коэффициент преломления, коэффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне.

    Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления (см. иммерсионный микроскоп, иммерсионные жидкости).

    Виды линз:
    Собирающие :
    1 - двояковыпуклая
    2 - плоско-выпуклая
    3 - вогнуто-выпуклая (положительный мениск)
    Рассеивающие :
    4 - двояковогнутая
    5 - плоско-вогнутая
    6 - выпукло-вогнутая (отрицательный мениск)

    Выпукло-вогнутая линза называется мениском и может быть собирательной (утолщается к середине), рассеивающей (утолщается к краям) или телескопической (фокусное расстояние равно бесконечности). Так, например линзы очков для близоруких - как правило, отрицательные мениски.

    Вопреки распространённому заблуждению, оптическая сила мениска с одинаковыми радиусами не равно нулю, а положительна, и зависит от показателя преломления стекла и от толщины линзы. Мениск, центры кривизны поверхностей которого находятся в одной точке называется концентрической линзой (оптическая сила всегда отрицательна).

    Отличительным свойством собирательной линзы является способность собирать падающие на её поверхность лучи в одной точке, расположенной по другую сторону линзы.

    Основные элементы линзы: NN - оптическая ось - прямая линия, проходящая через центры сферических поверхностей, ограничивающих линзу; O - оптический центр - точка, которая у двояковыпуклых или двояковогнутых (с одинаковыми радиусами поверхностей) линз находится на оптической оси внутри линзы (в её центре).
    Примечание . Ход лучей показан, как в идеализированной (тонкой) линзе, без указания на преломление на реальной границе раздела сред. Дополнительно показан несколько утрированный образ двояковыпуклой линзы

    Если на некотором расстоянии перед собирательной линзой поместить светящуюся точку S, то луч света, направленный по оси, пройдёт через линзу не преломившись, а лучи, проходящие не через центр, будут преломляться в сторону оптической оси и пересекутся на ней в некоторой точке F, которая и будет изображением точки S. Эта точка носит название сопряжённого фокуса, или просто фокуса .

    Если на линзу будет падать свет от очень удалённого источника, лучи которого можно представить идущими параллельным пучком, то по выходе из неё лучи преломятся под бо́льшим углом и точка F переместится на оптической оси ближе к линзе. При данных условиях точка пересечения лучей, вышедших из линзы, называется фокусом F’, а расстояние от центра линзы до фокуса - фокусным расстоянием.

    Лучи, падающие на рассеивающую линзу, по выходе из неё будут преломляться в сторону краёв линзы, то есть рассеиваться. Если эти лучи продолжить в обратном направлении так, как показано на рисунке пунктирной линией, то они сойдутся в одной точке F, которая и будет фокусом этой линзы. Этот фокус будет мнимым .

    Мнимый фокус рассеивающей линзы

    Сказанное о фокусе на оптической оси в равной степени относится и к тем случаям, когда изображение точки находится на наклонной линии, проходящей через центр линзы под углом к оптической оси. Плоскость, перпендикулярная оптической оси, расположенная в фокусе линзы, называется фокальной плоскостью .

    Собирательные линзы могут быть направлены к предмету любой стороной, вследствие чего лучи по прохождении через линзу могут собираться как с одной, так и с другой её стороны. Таким образом, линза имеет два фокуса - передний и задний . Расположены они на оптической оси по обе стороны линзы на фокусном расстоянии от главных точек линзы.


    3. Ход лучей в тонкой линзе

    Линза, для которой толщина принята равной нулю, в оптике называется «тонкой». Для такой линзы показывают не две главных плоскости, а одну, в которой как бы сливаются вместе передняя и задняя.

    Рассмотрим построение хода луча произвольного направления в тонкой собирающей линзе. Для этого воспользуемся двумя свойствами тонкой линзы:

    • Луч, прошедший через оптический центр линзы, не меняет своего направления;
    • Параллельные лучи, проходящие через линзу, сходятся в фокальной плоскости.

    Рассмотрим луч SA произвольного направления, падающий на линзу в точке A. Построим линию его распространения после преломления в линзе. Для этого построим луч OB, параллельный SA и проходящий через оптический центр O линзы. По первому свойству линзы луч OB не изменит своего направления и пересечёт фокальную плоскость в точке B. По второму свойству линзы параллельный ему луч SA после преломления должен пересечь фокальную плоскость в той же точке. Таким образом, после прохождения через линзу луч SA пойдёт по пути AB.

    Аналогичным образом можно построить другие лучи, например луч SPQ.

    Обозначим расстояние SO от линзы до источника света через u, расстояние OD от линзы до точки фокусировки лучей через v, фокусное расстояние OF через f. Выведем формулу, связывающую эти величины.

    Рассмотрим две пары подобных треугольников: 1) SOA и OFB; 2) DOA и DFB. Запишем пропорции

    Разделив первую пропорцию на вторую, получим

    После деления обоих частей выражения на v и перегруппировки членов, приходим к окончательной формуле

    где - фокусное расстояние тонкой линзы.


    4. Ход лучей в системе линз

    Ход лучей в системе линз строится теми же методами, что и для одиночной линзы.

    Рассмотрим систему из двух линз, одна из которых имеет фокусное расстояние OF, а вторая O 2 F 2 . Строим путь SAB для первой линзы и продолжаем отрезок AB до вхождения во вторую линзу в точке C.

    Из точки O 2 строим луч O 2 E, параллельный AB. При пересечении с фокальной плоскостью второй линзы этот луч даст точку E. Согласно второму свойству тонкой линзы луч AB после прохождения через вторую линзу пойдёт по пути BE. Пересечение этой линии с оптической осью второй линзы даст точку D, где сфокусируются все лучи, вышедшие из источника S и прошедшие через обе линзы.


    5. Построение изображения тонкой собирающей линзой

    При изложении характеристики линз был рассмотрен принцип построения изображения светящейся точки в фокусе линзы. Лучи, падающие на линзу слева, проходят через её задний фокус, а падающие справа - через передний фокус. Следует учесть, что у рассеивающих линз, наоборот, задний фокус расположен спереди линзы, а передний позади.

    Построение линзой изображения предметов, имеющих определённую форму и размеры, получается следующим образом: допустим, линия AB представляет собой объект, находящийся на некотором расстоянии от линзы, значительно превышающем её фокусное расстояние. От каждой точки предмета через линзу пройдёт бесчисленное количество лучей, из которых, для наглядности, на рисунке схематически изображён ход только трёх лучей.

    Три луча, исходящие из точки A, пройдут через линзу и пересекутся в соответствующих точках схода на A 1 B 1 , образуя изображение. Полученное изображение является действительным и перевёрнутым .

    В данном случае изображение получено в сопряжённом фокусе в некоторой фокальной плоскости FF, несколько удалённой от главной фокальной плоскости F’F’, проходящей параллельно ей через главный фокус.

    Если предмет находится на бесконечно далёком от линзы расстоянии, то его изображение получается в заднем фокусе линзы F’ действительным , перевёрнутым и уменьшенным до подобия точки.

    Если предмет приближён к линзе и находится на расстоянии, превышающем двойное фокусное расстояние линзы, то изображение его будет действительным , перевёрнутым и уменьшенным и расположится за главным фокусом на отрезке между ним и двойным фокусным расстоянием.

    Если предмет помещён на двойном фокусном расстоянии от линзы, то полученное изображение находится по другую сторону линзы на двойном фокусном расстоянии от неё. Изображение получается действительным , перевёрнутым и равным по величине предмету.

    Если предмет помещён между передним фокусом и двойным фокусным расстоянием, то изображение будет получено за двойным фокусным расстоянием и будет действительным , перевёрнутым и увеличенным .

    Если предмет находится в плоскости переднего главного фокуса линзы, то лучи, пройдя через линзу, пойдут параллельно, и изображение может получиться лишь в бесконечности.

    Если предмет поместить на расстоянии, меньшем главного фокусного расстояния, то лучи выйдут из линзы расходящимся пучком, нигде не пересекаясь. Изображение при этом получается мнимое , прямое и увеличенное , т. е. в данном случае линза работает как лупа.

    Нетрудно заметить, что при приближении предмета из бесконечности к переднему фокусу линзы изображение удаляется от заднего фокуса и по достижении предметом плоскости переднего фокуса оказывается в бесконечности от него.

    Эта закономерность имеет большое значение в практике различных видов фотографических работ, поэтому для определения зависимости между расстоянием от предмета до линзы и от линзы до плоскости изображения необходимо знать основную формулу линзы .


    6. Формула тонкой линзы

    Расстояния от точки предмета до центра линзы и от точки изображения до центра линзы называются сопряжёнными фокусными расстояниями.

    Эти величины находятся в зависимости между собой и определяются формулой, называемой формулой тонкой линзы (открытой Исааком Барроу):

    где - расстояние от линзы до предмета; - расстояние от линзы до изображения; - главное фокусное расстояние линзы. В случае толстой линзы формула остаётся без изменения с той лишь разницей, что расстояния отсчитываются не от центра линзы, а от главных плоскостей.

    Для нахождения той или иной неизвестной величины при двух известных пользуются следующими уравнениями:

    Следует отметить, что знаки величин u , v , f выбираются исходя из следующих соображений - для действительного изображения от действительного предмета в собирающей линзе - все эти величины положительны. Если изображение мнимое - расстояние до него принимается отрицательным, если предмет мнимый - расстояние до него отрицательно, если линза рассеивающая - фокусное расстояние отрицательно.

    Изображения чёрных букв через тонкую выпуклую линзу с фокусным расстоянием f (отображаются красным цветом). Показаны лучи для букв E, I и K (синим, зеленым и оранжевым соответственно). Размеры реального и перевернутого изображения E (2f) одинаковы. Образ I (f) - в бесконечности. К (при f/2) имеет двойной размер виртуального и прямого изображения


    7. Масштаб изображения

    Масштабом изображения () называется отношение линейных размеров изображения к соответствующим линейным размерам предмета. Это отношение может быть косвенно выражено дробью , где - расстояние от линзы до изображения; - расстояние от линзы до предмета.

    Здесь есть коэффициент уменьшения, т. е. число, показывающее во сколько раз линейные размеры изображения меньше действительных линейных размеров предмета.

    В практике вычислений гораздо удобнее это соотношение выражать в значениях или , где - фокусное расстояние линзы.


    8. Расчёт фокусного расстояния и оптической силы линзы

    Значение фокусного расстояния для линзы может быть рассчитано по следующей формуле:

    , где

    Коэффициент преломления материала линзы,

    Расстояние между сферическими поверхностями линзы вдоль оптической оси, также известное как толщина линзы , а знаки при радиусах считаются положительными, если центр сферической поверхности лежит справа от линзы и отрицательными, если слева. Если пренебрежительно мало, относительно её фокусного расстояния, то такая линза называется тонкой , и её фокусное расстояние можно найти как:

    где R>0 если центр кривизны находится справа от главной оптической оси; R<0 если центр кривизны находится слева от главной оптической оси. Например, для двояковыпуклой линзы будет выполняться условие 1/F=(n-1)(1/R1+1/R2)

    (Эту формулу также называют формулой тонкой линзы .) Величина фокусного расстояния положительна для собирающих линз, и отрицательна для рассеивающих. Величина называется оптической силой линзы. Оптическая сила линзы измеряется в диоптриях , единицами измерения которых являются м −1 .

    Указанные формулы могут быть получены аккуратным рассмотрением процесса построения изображения в линзе с использованием закона Снелла, если перейти от общих тригонометрических формул к параксиальному приближению.

    Линзы симметричны, то есть они имеют одинаковое фокусное расстояние независимо от направления света - слева или справа, что, однако, не относится к другим характеристикам, например, аберрациям, величина которых зависит от того, какой стороной линза повёрнута к свету.


    9. Комбинация нескольких линз (центрированная система)

    Линзы могут комбинироваться друг с другом для построения сложных оптических систем. Оптическая сила системы из двух линз может быть найдена как простая сумма оптических сил каждой линзы (при условии, что обе линзы можно считать тонкими и они расположены вплотную друг к другу на одной оси):

    .

    Если линзы расположены на некотором расстоянии друг от друга и их оси совпадают (система из произвольного числа линз, обладающих таким свойством, называется центрированной системой), то их общую оптическую силу с достаточной степенью точности можно найти из следующего выражения:

    ,

    где - расстояние между главными плоскостями линз.


    10. Недостатки простой линзы

    В современной фотоаппаратуре к качеству изображения предъявляются высокие требования.

    Изображение, даваемое простой линзой, в силу целого ряда недостатков не удовлетворяет этим требованиям. Устранение большинства недостатков достигается соответствующим подбором ряда линз в центрированную оптическую систему - объектив. Изображения, полученные при помощи простых линз, имеют различные недостатки. Недостатки оптических систем называются аберрациями, которые делятся на следующие виды:

    • Геометрические аберрации
      • Сферическая аберрация;
      • Кома;
      • Астигматизм;
      • Дисторсия;
      • Кривизна поля изображения;
    • Хроматическая аберрация;
    • Дифракционная аберрация (эта аберрация вызывается другими элементами оптической системы, и к самой линзе отношения не имеет).

    11. Линзы со специальными свойствами

    11.1. Линзы из органических полимеров

    Полимеры дают возможность создавать недорогие асферические линзы с помощью литья.

    Линзы контактные

    В области офтальмологии созданы мягкие контактные линзы. Их производство основано на применении материалов, имеющих бифазную природу, сочетающих фрагменты кремний-органического или кремний-фторорганического полимера силикона и гидрофильного полимера гидрогеля. Работа в течение более 20 лет привела к созданию в конце 90-х годов силикон-гидрогелевых линз, которые благодаря сочетанию гидрофильных свойств и высокой кислородопроницаемости могут непрерывно использоваться в течение 30 дней круглосуточно.


    11.2. Линзы из кварца

    Кварцевое стекло - переплавленный чистый кремнезём с незначительными (около 0,01 %) добавками Al 2 О 3 , СаО и MgO. Оно отличается высокой термостойкостью и инертностью ко многим химическим реактивам за исключением плавиковой кислоты.

    Прозрачное кварцевое стекло хорошо пропускает ультрафиолетовые и видимые лучи света.

    11.3. Линзы из кремния

    Кремний сочетает сверхвысокую дисперсию с самым большим абсолютным значением коэффициента преломления n=3,4 в диапазоне ИК-излучения и полной непрозрачностью в видимом диапазоне спектра.

    Кроме того, именно свойства кремния и новейшие технологии его обработки позволили создать линзы для рентгеновского диапазона электромагнитных волн.

    12. Применение линз

    Линзы являются универсальным оптическим элементом большинства оптических систем.

    Традиционное применение линз - бинокли, телескопы, оптические прицелы, теодолиты, микроскопы и фотовидеотехника. Одиночные собирающие линзы используются как увеличительные стёкла.

    Другая важная сфера применения линз офтальмология, где без них невозможно исправление недостатков зрения - близорукости, дальнозоркости, неправильной аккомодации, астигматизма и других заболеваний. Линзы используют в таких приспособлениях, как очки и контактные линзы.

    В радиоастрономии и радарах часто используются диэлектрические линзы, собирающие поток радиоволн в приёмную антенну, либо фокусирующие на цели.

    В конструкции плутониевых ядерных бомб для преобразования сферической расходящейся ударной волны от точечного источника (детонатора) в сферическую сходящуюся применялись линзовые системы, изготовленные из взрывчатки с разной скоростью детонации (то есть с разным коэффициентом преломления).


    Примечания

    1. Наука в Сибири - www.nsc.ru/HBC/hbc.phtml?15 320 1
    2. линзы из кремния для ИК диапазона - www.optotl.ru/mat/Si#2

    Данный реферат составлен на основе статьи из русской Википедии . Синхронизация выполнена 09.07.11 20:53:22
    Похожие рефераты: Линза Френеля , Линза Люнеберга , Линза Бийе , Электромагнитная линза , Квадрупольная линза , Асферическая линза .

    Как вы уже знаете, законы преломления и отражения определяют поведение луча при его падении на границу раздела двух прозрачных сред. При этом граница раздела считалась плоской. Однако в жизни нам чаще приходится сталкиваться с криволинейными поверхностями. Одним из представителей таких границ является сфера.

    Такой поверхностью, даже двумя, обладает линза. Она представляет собой один из самых важных оптических приборов.

    Линзу можно представить как фигуру, образованную пересечением двух сфер. У некоторых линз одна из боковых поверхностей плоская. Эту поверхность можно представить как сферу с бесконечно большим радиусом. Конечно же, две сферы могут пересекаться различным способом (Рис. 1).

    Рис. 1. Способы пересечения двух сфер.

    Пересекая две сферы, можно вывести все виды линз (Рис. 2).


    Рис. 2. Виды линз. Собирающие: 1. Двояковыпуклая; 2. Плоско-выпуклая; 3. Вогнуто-выпуклая. Рассеивающие: 4. Двояковогнутая; 5. Плоско-вогнутая; 6. Выпукло-вогнутая

    Для первоначального изучения особенности прохождения света через линзы нам будет достаточно рассмотреть первый тип. Рассмотрим двояковыпуклую линзу, ограниченную двумя сферическими преломляющими поверхностями. Эти поверхности обозначим, как и . Центр первой сферы лежит в точке , второй - в точке

    На рисунке для ясности изображена линза с видимой толщиной. В действительности мы будем предполагать, что все рассматриваемые линзы очень тонкие.


    Рис. 3, рис. 4. Двояковыпуклая линза

    В таком случае точки и можно считать практически совпадающими и обозначить одной точкой . Точка называется оптическим центром линзы. Всякая прямая, проходящая через оптический центр линзы, называется оптической осью линзы. Та из осей, которая проходит через центры обеих преломляющих поверхностей, называется главной оптической осью. Все остальные - побочные оптические оси.

    Луч, идущий по какой-либо из оптических осей, проходя через линзу, практически не меняет своего направления. Действительно, для лучей, идущих вдоль оптической оси, участки обеих поверхностей линзы можно считать параллельными, ведь толщину линзы мы считаем малой (Рис. 5).

    Рис. 5. Элементы линзы

    При прохождении луча через плоскопараллельную пластинку световой луч претерпевает лишь параллельное смещение. Но смещением луча в очень тонкой пластинке можно пренебречь.

    Если на линзу падает луч, не совпадающий ни с одной оптической осью, то он испытывает двойное преломление. Сначала на первой поверхности, ограничивающей линзу, а затем на второй, при этом луч отклоняется от своего первоначального направления.

    Если через линзу пропустить пучок лучей, параллельных главной оптической оси и находящихся от нее на малом расстоянии, то после преломления все лучи пучка соберутся в одной точке, ее называют главным фокусом линзы (Рис. 6).


    Рис. 6. Главный фокус линзы

    Благодаря описанному свойству двояковыпуклую линзу, если она изготовлена из материала с относительным показателем преломления большим единицы, называют собирающей.

    Таким образом, мы можем выделить два утверждения касательно собирающей линзы.

    1. Луч, идущий вдоль одной из оптических осей собирающей линзы, при прохождении через нее не меняет своего направления.

    2. Луч, который идет параллельно главной оптической оси и на небольшом расстоянии от нее, после преломления проходит через главный фокус линзы.

    Теперь сделанные утверждения нужно дополнить выводом о том, как будет вести себя луч, который не проходит через оптический центр и не параллелен главной оптической оси. Для этого введем следующее определение.

    Фокальной плоскостью линзы называется плоскость, которая проходит через главный фокус и перпендикулярна главной оптической оси линзы. Все точки этой плоскости, за исключением главного фокуса, называют побочными фокусами линзы.

    Для чего нам нужна данная плоскость? Оказывается, если на линзу падает пучок света параллельный побочной оси, то после преломления в линзе этот лучок соберется в одном из побочных фокусов линзы.

    Тогда возникает вопрос: как же найти побочный фокус, в котором соберется этот пучок (Рис. 7)?

    Рис. 7. Нахождение побочного фокуса

    На рисунке показан этот побочный фокус, он является пересечением побочной оптической оси, параллельной лучам пучка, с фокальной плоскостью. Попробуем обосновать, почему именно таким способом лучи преломляются в линзе (конкретно в двояковыпуклой).

    Данную линзу можно представить как совокупность призм, склеенных в одно целое. Мы знаем, что всякая прима, относительный показатель преломления которой больше единицы, отклоняет луч в сторону своего основания. Поскольку мы имеем дело с набором линз, преломляющие углы которых монотонно уменьшаются при удалении от главной оптической оси, то и углы, на которые эти призмы преломляют лучи параллельного пучка, будут различными.

    Рис. 8. Преломление пучка света

    Мы предполагали, что пучок лучей падает на линзу слева направо, но ничего не изменится, если на линзу направить идентичный пучок лучей справа налево. Этот пучок лучей, направленный параллельно главной оптической оси, вновь соберется в одной точке во втором фокусе линзы, на некотором расстоянии от ее оптического центра.

    Фокус обычно называют передним фокусом, а - задним фокусом линзы. Соответственно, расстояние до называют передним фокусным расстоянием, а до - задним фокусным расстоянием.

    Рассмотрим, от чего может зависеть фокусное расстояние линзы. Совершенно ясно, что если любой луч, идущий параллельно главной оптической оси, попадает в главный фокус, то фокусное расстояние не зависит от параметров луча. Более общим утверждением будет такое: фокусное расстояние вообще не зависит от параметров источника света, но с той оговоркой, что мы рассматриваем лучи, близкие к главной оптической оси. От чего же тогда может зависеть фокусное расстояние? Во-первых, от материала, из которого изготовлена линза, во-вторых, оно зависит от кривизны поверхностей, ограничивающих линзу. Выражение, определяющее такую зависимость, называется формулой шлифовщика:

    - относительный показатель преломления

    Радиусы боковых поверхностей линзы

    Еще одной важной характеристикой линзы является ее оптическая сила .

    Понятно, что чем больше фокусное расстояние, тем оптическая сила меньше.

    Теперь рассмотрим вопрос практического использования линзы. В первую очередь, для этого нам нужно изобрести алгоритмы, которые позволяют нам строить изображения, даваемые двояковыпуклой линзой.

    Для начала введем обозначения, тонкую двояко-выпуклую линзу будем изображать отрезком со стрелочками, главная оптическая ось перпендикулярна линзе и проходит через ее оптический центр , главные фокусы линзы находятся на одинаковом расстоянии от оптического центра, по обе стороны. Фокусное расстояние, как и саму точку фокуса, обозначим . Предмет, изображение которого нам нужно получить, обозначим стрелочкой. (Пока рассмотрим случай, когда предмет расположен перпендикулярно главной оптической оси.)

    Для получения изображения предмета нам достаточно построить изображения концов отрезка, более того, если один из концов отрезка лежит на главной оптической оси, то достаточно построить лишь изображение второго конца отрезка, который не принадлежит оси, затем опустить перпендикуляр на главную оптическую ось и получить изображение всего предмета.

    Для этого, как уже говорилось, проведем два луча из верхнего конца предмета, найдем точку пересечения этих лучей после преломления в линзе. В качестве первого луча возьмем тот, что проходит через оптический центр, он не преломляется, а в качестве второго - луч, идущий параллельно главной оптической оси. Второй луч после преломления идет в фокус.

    Получаем изображение точки, опускаем перпендикуляр на ось, соединяем полученные точки и получаем изображение предмета (Рис. 9).

    Рис. 9. Построение изображения предмета

    Обозначим через расстояние от предмета до линзы и от изображения до линзы. Отношение высоты изображения () к высоте предмета (), назовем увеличением линзы и обозначим через гамма. Тогда можно вывести такую формулу:

    Предмет обозначим , изображение - . Рассмотрим две пары подобных треугольников (Рис. 10), и из этого можно вывести еще одну формулу:


    Рис. 10. Геометрическая задача по нахождению изображения

    Также из подобия треугольников и следует, что:

    Теперь мы можем приравнять полученные равенства, производим несложные арифметические вычисления и получаем конечную формулу:

    Двояковогнутая линза

    Двояковогнутую линзу, изготовленную из материала с коэффициентом преломления большим 1, называют рассеивающей. Такое название обусловлено тем, что лучи, идущие до преломления в линзе параллельно ее главной оптической оси, после преломления отклоняются от своего направлению в сторону от главной оптической оси, в отличие от собирающей линзы. Все утверждения о ходе лучей в рассевающей линзе являются аналогами для соответствующих утверждений в собирательной линзе с той лишь разницей, что теперь говорить стоит не о ходе самих лучей, а об их продолжениях (Рис. 11).


    Рис. 11.

    1. Луч, проходящий через оптический центр, не преломляется

    2. Луч, параллельный главной оптической оси, после преломления идет так, что его продолжение проходит через главный фокус

    Луч, параллельный побочной оптической оси, после преломления идет так, что его продолжение проходит через побочный фокус, который является точкой пересечения побочной оптической оси параллельной лучу с фокальной плоскостью (Рис. 12).


    Рис. 12. Преломление луча, идущего параллельно побочной оси

    Формула тонкой рассевающей линзы будет иметь вид:

    Полученная формула является формулой тонкой линзы, как мы видим, она связывает три величины: расстояние от предмета до линзы, расстояние от изображения до линзы и фокусное расстояние линзы. Зная два из выше приведенных параметров, мы с легкостью можем найти третий.

    Важно отметить, что в задачах лишь два из этих параметров могут менять свое значение, а именно расстояние от предмета до линзы и расстояние до изображения.

    Пример решения задачи

    Задача № 1: определить увеличение, даваемое линзой, фокусное расстояние которой равно 0,26 м, если предмет отстоит от нее на расстоянии 30 см.

    Решение: используем выведенные формулы.

    Таким образом, нам не хватает лишь расстояния до предмета. Воспользовавшись формулой тонкой линзы, найдем это расстояние:

    Ответ: 6,5.

    Фокусное расстояние линзы, как мы знаем, не зависит от положения предмета и от положения изображения, а определяется только лишь параметрами самой линзы. Об этом мы уже говорили, когда ознакомились с формулой шлифовщика.

    Также важно отметить, что в формулу не входит размер предмета и размер изображения. И тут важно сделать еще один вывод: вышеприведенная картинка не изменится, если изображение и предмет поменять местами. Это обусловлено принципом обратимости световых лучей, о котором говорилось на прошлых уроках.

    На данном уроке мы рассмотрели одно из самых важных практических приложений геометрической оптики, а именно ход лучей в тонкой линзе. Все выводы, сделанные о ходе лучей через двояковыпуклую линзу, можно применить и к другим разновидностям линз. Кроме того, мы вывели важное соотношение - формулу тонкой линзы, которая позволяет нам делать выводы об изображениях, даваемых линзой в случаях, если нам известно расстояние от предмета до линзы.

    Список литературы

    1. Жилко В.В., Маркович Я.Г. Физика. 11 класс. - 2011.

    2. Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика. 11 класс. Учебник.

    1. Касьянов В.А. Физика, 11 класс. - 2004.

    2. Интернет портал «ЗАО "Опто-Технологическая Лаборатория"» ()

    3. Интернет портал «ГЕОМЕТРИЧЕСКАЯ ОПТИКА» ()

    Домашнее задание

    1. С помощью линзы на вертикальном экране получено действительное изображение электрической лампочки. Как изменится изображение, если закрыть верхнюю половину линзы?

    2. Постройте изображение предмета, помещенного перед собирающей линзой, в следующих случаях: 1. ; 2. ; 3. ; 4. .