Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Как приготовить тортилью
  • Имбирный чай — рецепты приготовления
  • Имя Серафима в православном календаре (Святцах)
  • Пастырь и учитель. Духовник Царской Семьи. На Полтавской кафедре
  • Как устроен человеческий глаз. Строение глаза человека фото с описанием

    Как устроен человеческий глаз. Строение глаза человека фото с описанием

    Зрение является каналом, посредством которого человек получает примерно 70% всех данных о мире, который его окружает. И возможно это только по той причине, что именно зрение человека представляет собой одну из самых сложных и поражающих воображение зрительных систем на нашей планете. Если бы не было зрения, все мы, скорее всего, просто жили бы в темноте.

    Человеческий глаз обладает совершенным строением и обеспечивает зрение не только в цвете, но также в трёх измерениях и с высочайшей резкостью. Он обладает способностью моментально менять фокус на самые разные расстояния, осуществлять регуляцию объёма поступающего света, различать между собой огромное количество цветов и ещё большее количество оттенков, производить коррекцию сферических и хроматических аберраций и т.д. С мозгом глаз связывают шесть уровней сетчатки, в которых ещё перед тем, как информация будет отправлена в мозг, данные проходят через этап компрессии.

    Но как же устроено наше с вами зрение? Как посредством усиления цвета, отражённого от предметов, мы трансформируем его в изображение? Если подумать об этом серьёзно, можно сделать вывод, что устройство зрительной системы человека до мельчайших подробностей «продумано» создавшей его Природой. Если же вы предпочитаете верить в то, что за создание человека ответственен Создатель или некая Высшая Сила, то эту заслугу можете приписать им. Но давайте не будем разбираться в , а продолжим разговор об устройстве зрения.

    Огромное количество деталей

    Строение глаза и его физиологию можно без обиняков назвать действительно идеальными. Подумайте сами: оба глаза находятся в костных впадинах черепа, которые защищают их от всевозможных повреждений, однако выступают из них они именно так, чтобы обеспечивался максимально широкий горизонтальный обзор.

    Расстояние, на котором глаза находятся друг от друга, обеспечивает пространственную глубину. А сами глазные яблоки, как доподлинно известно, обладают шарообразной формой, благодаря чему способны вращаться в четырёх направлениях: влево, вправо, вверх и вниз. Но каждый из нас воспринимает всё это, как само собой разумеющееся - мало кому приходит в голову представить, что было бы, если бы наши глаза были квадратными или треугольными или их движение было бы хаотичным - это бы сделало зрение ограниченным, сумбурным и малоэффективным.

    Итак, устройство глаза предельно сложно, но как раз это и делает возможным работу примерно четырёх десятков его различных составляющих. И даже если бы не было хоть одного из этих элементов, процесс зрения перестал бы осуществляться так, как ему следует осуществляться.

    Чтобы убедиться в том, насколько сложно устроен глаз, предлагаем вам обратить своё внимание на рисунок ниже.

    Давайте же поговорим о том, как реализуется на практике процесс зрительного восприятия, какие элементы зрительной системы в этом участвуют, и за что каждый из них отвечает.

    Прохождение света

    По мере приближения света к глазу световые лучи сталкиваются с роговицей (иначе её называют роговой оболочкой). Прозрачность роговицы позволяет свету проходить сквозь неё во внутреннюю поверхность глаза. Прозрачность, кстати, является важнейшей характеристикой роговицы, и прозрачной она остаётся по причине того, что особый протеин, который в ней содержится, сдерживает развитие кровеносных сосудов - процесс, происходящий практически в каждой из тканей человеческого тела. В том случае если бы роговица прозрачной не была, остальные компоненты зрительной системы не имели бы никакого значения.

    Помимо прочего, роговица не даёт попадать во внутренние полости глаза сору, пыли и каким-либо химическим элементам. А кривизна роговой оболочки позволяет ей преломлять свет и помогать хрусталику фокусировать световые лучи на сетчатке.

    После того как свет прошёл сквозь роговицу, он проходит через маленькое отверстие, расположенное посередине радужки глаза. Радужка же представляет собой круглую диафрагму, которая находится перед хрусталиком сразу за роговицей. Радужка также является тем элементом, который придаёт глазу цвет, а цвет зависит от преобладающего в радужке пигмента. Центральное отверстие в радужке - это и есть знакомый каждому из нас зрачок. Размер этого отверстия имеет возможность изменяться, чтобы контролировать количество поступающего в глаз света.

    Размер зрачка изменятся непосредственно радужкой, а обусловлено это её уникальнейшим строением, ведь состоит она из двух различных видов мышечных тканей (даже здесь есть мышцы!). Первая мышца является круговой сжимающей - она располагается в радужке кругообразно. Когда свет яркий, происходит её сокращение, вследствие чего зрачок сокращается, как бы втягиваясь мышцей внутрь. Вторая мышца является расширяющей - она расположена радиально, т.е. по радиусу радужки, что можно сравнить со спицами в колесе. При тёмном освещении происходит сокращение этой второй мышцы, и радужка раскрывает зрачок.

    Многие до сих пор испытывают некоторые затруднения, когда пытаются объяснить, каким же всё-таки образом происходит формирование вышеназванных элементов зрительной системы человека, ведь в любой другой промежуточной форме, т.е. на каком-либо эволюционном этапе работать они просто не смогли бы, но человек видит с самого начала своего существования. Загадка…

    Фокусировка

    Минуя названные выше этапы, свет начинает проходить через хрусталик, находящийся за радужкой. Хрусталик является оптическим элементом, имеющим форму выпуклого продолговатого шара. Хрусталик абсолютно гладок и прозрачен, в нём нет кровеносных сосудов, а сам он расположен в эластичном мешочке.

    Проходя сквозь хрусталик, свет преломляется, после чего происходит его фокусировка на ямке сетчатки - самом чувствительном месте, содержащем максимальное количество фоторецепторов.

    Важно заметить, что уникальное строение и состав обеспечивают роговице и хрусталику большую силу преломления, гарантирующую короткое фокусное расстояние. И как же удивительно, что такая сложная система вмещается всего в одном глазном яблоке (подумайте только, как бы мог выглядеть человек, если бы для фокусировки световых лучей, идущих от предметов, требовался бы, например, метр!).

    Не менее интересно и то, что совместная преломляющая сила этих двух элементов (роговицы и хрусталика) находится в прекрасном соотношении с глазным яблоком, а это можно смело назвать ещё одним доказательством того, что зрительная система создана просто непревзойдённо, т.к. процесс фокусирования слишком сложен, чтобы говорить о нём, как о чём-то, что произошло лишь благодаря пошаговым мутациям - эволюционным стадиям.

    Если же речь идёт о предметах расположенных близко к глазу (как правило, близким считается расстояние менее 6 метров), то здесь всё ещё любопытнее, ведь в этой ситуации преломление световых лучей оказывается ещё более сильным. Обеспечивается же это увеличением кривизны хрусталика. Хрусталик соединён посредством цилиарных поясков с ресничной мышцей, которая, сокращаясь, даёт хрусталику возможность принимать более выпуклую форму, тем самым увеличивая свою преломляющую силу.

    И здесь снова нельзя не упомянуть о сложнейшем строении хрусталика: составляют его множество ниточек, которые состоят из соединённых друг с другом клеточек, а тонкие пояски связывают его с цилиарным телом. Фокусировка осуществляется под контролем головного мозга крайне быстро и на полном «автомате» — осуществить такой процесс осознанно для человека невозможно.

    Значение «фотоплёнки»

    Результатом фокусировки становится сосредоточение изображения на сетчатке, представляющей собой многослойную ткань, чувствительную к свету, покрывающую заднюю часть глазного яблока. В сетчатке содержится примерно 137 000 000 фоторецепторов (для сравнения можно привести современные цифровые фотоаппараты, в которых подобных сенсорных элементов не более 10 000 000). Такое громадное количество фоторецепторов обусловлено тем, что расположены они крайне плотно - примерно 400 000 на 1 мм².

    Здесь не будет лишним привести слова специалиста по микробиологии Алана Л. Гиллена, говорящего в своей книге «Тело по замыслу» о сетчатке глаза, как о шедевре инженерного проектирования. Он считает, что сетчатка является самым удивительным элементом глаза, сравнимым с фотоплёнкой. Светочувствительная сетчатка, расположенная на задней стороне глазного яблока, намного тоньше целлофана (её толщина составляет не более 0,2 мм) и гораздо чувствительнее, чем любая, созданная человеком фотоплёнка. Клетки этого уникального слоя способны обрабатывать до 10 миллиардов фотонов, в то время как самый чувствительный фотоаппарат способен обработать лишь несколько их тысяч. Но ещё удивительнее то, что человеческий глаз может улавливать единицы фотонов даже в темноте.

    Всего сетчатку составляют 10 слоёв фоторецепторных клеток, 6 слоёв из которых являются слоями светочувствительных клеток. 2 вида фоторецепторов имеют особую форму, по причине чего их называют колбочками и палочками. Палочки крайне восприимчивы к свету и обеспечивают глазу чёрно-белое восприятие и ночное зрение. Колбочки, в свою очередь, не так восприимчивы к свету, но способны различать цвета - оптимальная работа колбочек отмечается в дневное время суток.

    Благодаря работе фоторецепторов световые лучи трансформируются в комплексы электрических импульсов и посылаются в мозг на невероятно большой скорости, а сами эти импульсы за доли секунд преодолевают свыше миллиона нервных волокон.

    Связь фоторецепторных клеток в сетчатке очень сложна. Колбочки и палочки никак напрямую с мозгом не связаны. Получив сигнал, они переадресовывают его биполярным клеткам, а те перенаправляют уже обработанные собою сигналы ганглиозным клеткам, более миллиона аксонов (нейритов, по которым передаются нервные импульсы) которых составляют единый зрительный нерв, по которому данные и поступают в мозг.

    Два слоя промежуточных нейронов, до того как зрительные данные будут отправлены в мозг, способствуют параллельной обработке этой информации шестью уровнями восприятия, находящимися в сетчатке глаза. Необходимо это для того чтобы изображения распознавались как можно быстрее.

    Восприятие мозга

    После того как обработанная зрительная информация поступает в мозг, он начинает её сортировку, обработку и анализ, а также формирует цельное изображение из отдельных данных. Конечно же, о работе человеческого мозга ещё много чего неизвестно, однако даже того, что научный мир может предоставить сегодня, вполне достаточно, чтобы поразиться.

    При помощи двух глаз формируются две «картинки» мира, который окружает человека - по одной на каждую сетчатку. Обе «картинки» передаются в мозг, и в действительности человек видит два изображения в одно и то же время. Но как?

    А дело вот в чём: точка сетчатки одного глаза точно соответствует точке сетчатки другого, а это говорит о том, чтоб оба изображения, попадая в мозг, могут накладываться друг на друга и сочетаться вместе для получения единого изображения. Информация, полученная фоторецепторами каждого из глаз, сходится в зрительной коре головного мозга, где и появляется единое изображение.

    По причине того, что у двух глаз может быть разная проекция, могут наблюдаться и некоторые несоответствия, однако мозг сопоставляет и соединяет изображения таким образом, что человек никаких несоответствий не ощущает. Мало того - эти несоответствия могут быть использованы с целью получения чувства пространственной глубины.

    Как известно, из-за преломления света зрительные образы, поступающие в мозг, изначально являются очень маленькими и перевёрнутыми, однако «на выходе» мы получаем то изображение, которое привыкли видеть.

    Помимо этого в сетчатке изображение делится мозгом надвое по вертикали - через линию, которая проходит через ямку сетчатки. Левые части изображений, полученных обоими глазами, перенаправляются в , а правые части - в левое. Так, каждое из полушарий смотрящего человека получает данные только от одной части того, что он видит. И снова - «на выходе» мы получаем цельное изображение без каких бы то ни было следов соединения.

    Разделение изображений и крайне сложные оптические пути делают так, что мозг видит отдельно каждым из своих полушарий с использованием каждого из глаз. Это позволяет ускорить обработку потока входящей информации, а также обеспечивает зрение одним глазом, если вдруг человек по какой-либо причине перестаёт видеть другим.

    Можно заключить, что мозг в процессе обработки зрительной информации убирает «слепые» пятна, искажения из-за микродвижений глаз, морганий, угла зрения и т.п., предлагая своему хозяину адекватное целостное изображение наблюдаемого.

    Ещё одним из важных элементов зрительной системы является . Умалять значение этого вопроса никак нельзя, т.к. чтобы вообще иметь возможность использовать зрение должным образом мы должны уметь поворачивать глаза, поднимать их, опускать, короче говоря - двигать глазами.

    Всего можно выделить 6 внешних мышц, которые соединяются с внешней поверхностью глазного яблока. К этим мышцам относятся 4 прямые (нижняя, верхняя, боковая и средняя) и 2 косые (нижняя и верхняя).

    В тот момент, когда какая-либо из мышц сокращается, мышца, являющаяся для неё противоположной, расслабляется - это обеспечивает ровное движение глаз (в противном случае все движения глазами осуществлялись бы рывками).

    При повороте двух глаз автоматически изменяется движение всех 12 мышц (по 6 мышц на каждый глаз). И примечательно то, что процесс этот является непрерывным и очень хорошо скоординированным.

    По словам знаменитого офтальмолога Питера Джени, контроль и координация связи органов и тканей с центральной нервной системой посредством нервов (это называется иннервацией) всех 12 глазных мышц представляет собой один из очень сложных процессов, происходящих в мозге. Если же добавить к этому точность перенаправления взора, плавность и ровность движений, скорость, с которой может вращаться глаз (а она составляет в сумме до 700° в секунду), и соединить всё это, мы получим на самом деле феноменальную по части исполнения подвижную глазную систему. А то, что человек имеет два глаза, делает её ещё более сложной - при синхронном движении глаз необходима одинаковая мускульная иннервация.

    Мышцы, которые вращают глаза, отличны от мышц скелета, т.к. их составляет множество всевозможных волокон, а контролируются они ещё большим числом нейронов, иначе точность движений стала бы невозможной. Данные мышцы можно назвать уникальными ещё и потому, что они способны быстро сокращаться и практически не устают.

    Учитывая то, что глаз - это один из наиболее важных органов человеческого организма, он нуждается в непрерывном уходе. Именно для этого как раз и предусмотрена, если так можно назвать, «интегрированная система очистки», которая состоит из бровей, век, ресниц и слёзных желёз.

    При помощи слёзных желёз регулярно производится липкая жидкость, с медленной скоростью движущаяся вниз по внешней поверхности глазного яблока. Эта жидкость смывает различный сор (пыль и т.п.) с роговицы, после чего входит во внутренний слёзный канал и затем стекает по носовому каналу, выводясь из организма.

    В слезах содержится очень сильное антибактериальное вещество, уничтожающее вирусы и бактерии. Веки выполняют функцию стеклоочистителей - они очищают и увлажняют глаза благодаря непроизвольному морганию с интервалом в 10-15 секунд. Вместе с веками работают ещё и ресницы, предотвращая попадание в глаз любого сора, грязи, микробов и т.п.

    Если бы веки не выполняли свою функцию, глаза человека постепенно бы засохли и покрылись рубцами. Если бы не было слёзного протока, глаза бы постоянно заливались слёзной жидкостью. Если бы человек не моргал, в его глаза попадал бы мусор, и он мог бы даже ослепнуть. Вся «очистительная система» должна включать в себя работу всех элементов без исключения, в противном случае она просто перестала бы функционировать.

    Глаза как показатель состояния

    Глаза человека способны передавать немало информации в процессе его взаимодействия с другими людьми и окружающим миром. Глаза могут излучать любовь, гореть от гнева, отражать радость, страх или беспокойство, или усталости. Глаза показывают, куда смотрит человек, заинтересован он в чём-либо или же нет.

    Например, когда люди закатывают глаза, беседуя с кем-то, это можно расценивать совершенно иначе, нежели обычный взгляд, направленный вверх. Большие глаза у детей вызывают у окружающих восторг и умиление. А состояние зрачков отражает то состояние сознания, в котором в данный момент времени находится человек. Глаза - это показатель жизни и смерти, если уж говорить в глобальном смысле. Наверное, именно по этой причине их называют «зеркалом» души.

    Вместо заключения

    В этом уроке мы с вами рассмотрели устройство зрительной системы человека. Естественно, мы упустили немало деталей (сама по себе эта тема очень объёмна и вместить её в рамки одного урока проблематично), но всё же постарались донести материал так, чтобы вы имели чёткое представление о том, КАК видит человек.

    Вы не могли не заметить, что как сложность, так и возможности глаза позволяют этому органу многократно превосходить даже самые современные технологии и научные разработки. Глаз является наглядной демонстрацией сложности инженерии в огромном количестве нюансов.

    Но знать об устройстве зрения - это, конечно же, хорошо и полезно, однако наиболее важно знать о том, как зрение можно восстанавливать. Дело в том, что и образ жизни человека, и условия, в которых он живёт, и некоторые другие факторы (стрессы, генетика, вредные привычки, заболевания и многое другое) - всё это нередко способствует тому, что с годами зрение может ухудшаться, т.е. зрительная система начинает давать сбои.

    Но ухудшение зрения в большинстве случаев не является необратимым процессом - зная определённые методики, данный процесс можно повернуть вспять, и сделать зрение, если уж и не таким, как у младенца (хотя иногда возможно и это), то хорошим настолько, насколько вообще это возможно для каждого отдельно взятого человека. Поэтому следующий урок нашего курса по развитию зрения будет посвящён методам восстановления зрения.

    Зрите в корень!

    Проверьте свои знания

    Если вы хотите проверить свои знания по теме данного урока, можете пройти небольшой тест, состоящий из нескольких вопросов. В каждом вопросе правильным может быть только 1 вариант. После выбора вами одного из вариантов, система автоматически переходит к следующему вопросу. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что вопросы каждый раз разные, а варианты перемешиваются.

    13-08-2010, 14:01

    Описание

    Большую часть (до 80%) информации об окружающем мире
    мы получаем через глаза.

    Наши глаза специально предназначены для того, чтобы снабжать нас информацией о глубине, расстоянии, величине, движении и цвете. К тому же они способны двигаться вверх, вниз и в обе стороны, давая нам максимально широкий обзор.

    Человеческий глаз можно сравнить с фотоаппаратом. Передняя стенка глаза действует как линза объектива. Линза -это изогнутый фрагмент прозрачного материала, который преломляет проходящие через него лучи света.

    Зрачок похож на расположенную позади объектива диафрагму. Расширяясь или сужаясь, он регулирует количество проникающего в глаз света. Внутренняя оболочка глаза, или сетчатка - это "фотопленка" и "экран", на котором фокусируется «фотоснимок ».

    Как действуют глаза

    На самом деле глаз устроен гораздо сложнее. Если фотоаппараты просто запечатлевают изображение на пленке, то люди и животные способны распознать попавшую на сетчатку информацию и действовать на основании увиденного.

    Дело в том, что глаз соединен с головным мозгом с помощью зрительного нерва . Этот нерв находится внутри особого отростка, прикрепленного к задней стенке глаза. Он и передает поступающие на сетчатку сигналы в форме импульсов, которые расшифровываются в мозгу.

    Каждый глаз видит предметы под несколько иным углом, направляя в мозг свой сигнал. Наш мозг еще в самом раннем детстве "учится" сводить вместе оба изображения так, чтобы мы не видели двойных контуров. Наложенные друг на друга изображения позволяют увидеть объем предметов, и то, что один предмет находится впереди или позади другого. Это явление известно как трехмерность изображения, или "3-D".

    Кроме того, мозг позволяет нам правильно различать верх и низ. Преломляясь при прохождении через хрусталик, свет оставляет на сетчатке перевернутое изображение. Наш мозг - считывает его и тотчас переворачивает «с головы на ноги». Однако новорожденный поначалу видит все предметы перевернутыми.

    Перевернутое изображение

    Почему изменяется величина зрачка

    Зрачок - это отверстие в центре пигментированной радужной оболочки. Радужка контролирует количество света, попадающего в глаз через зрачок. При очень ярком свете она сужается, и зрачок уменьшается до размеров крохотной точки, пропуская в глаз лишь малую толику света. При тусклом освещении она расслабляется, и зрачок расширяется, открывая доступ свету. Зрачки могут расширяться и в тех случаях, когда вы охвачены каким-то сильным чувством, например, любовью или страхом.

    Как устроен глаз

    Человеческий глаз имеет форму шара. В центре его переднего отдела находится чуть выпуклый прозрачный слой, или роговица. Она соединена с белком, или склерой, охватывающей почти всю внешнюю поверхность глаза. Склера покрыта тонкими оболочками, пронизанными мельчайшими кровеносными сосудами.

    Роговица - первая линза, через которую проходит световой луч. У нее неподвижный фокус, и она никогда не меняет ни позиции, ни формы. Под роговицей находится радужная оболочка, или "ирис". На греческом языке это слово означает "радуга". Чаще всего радужки бывают голубыми, зелеными или карими. По сути, радужная оболочка представляет собой мышечный диск с отверстием и центре. Это отверстие и есть зрачок, через который свет попадает внутрь глаза.

    Пространство между роговицей и радужкой заполнено прозрачным веществом, которое называется внутриглазной жидкостью. Она защищает роговицу от болезнетворных микробов.

    Настройка объектива

    За радужной оболочкой находится второй объектив, или хрусталик. Он гораздо более подвижен и гибок, нежели роговица. На месте его удерживают целая сеть волокон, которые называются подвешивающими связками.

    Со всех сторон хрусталик окружен цилиарными мышцами, которые придают ему различные формы. Скажем, когда вы смотрите на какой-нибудь отдаленный предмет, это мышцы расслабляются, хрусталик увеличивается в диаметре и становится более плоским. При взгляде на более близкий предмет кривизна хрусталика увеличивается.

    Позади хрусталика находится внутренняя камера глаза, заполненная студенистым веществом, которое называют стекловидным телом. Свет должен сначала пройти через это вещество и только после этого попадает на сетчатку - слой, покрывающий заднюю и боковые стенки внутренней камеры глаза.

    Близорукость

    Внутреннее строение глаза

    Шарообразную форму, твердость и упругость глазному яблоку придает заполняющая его студенистая жидкость, называемая стекловидным телом. На своем месте в глазнице глаз удерживается особым отростком. Внутри него находится зрительный нерв, передающий в мозг зрительные сигналы.

    Палочки и колбочки

    Сетчатка состоит из 130 млн. светочувствительных клеток, которые называют палочками и колбочками. Палочки чувствительны к свету, но не различают цветов, за исключением синего и зеленого.

    Колбочки улавливают все цвета и помогают нам четче видеть, но перестают работать при недостатке освещения. Вот почему с наступлением сумерек наше зрение ослабевает, мы хуже различаем цвета и все видим в синих или серо-зеленых тонах. Французы называют это время сучок "часом синевы".

    Слепящий свет

    При очень ярком свете палочки закрываются, уступая всю работу колбочкам. По мере ослабления света палочки оживают, но это происходит не сразу: когда заходишь в темную комнату с залитой солнцем улицы, глаза лишь постепенно привыкают к темноте, а при выходе на солнечный свет вы на мгновение как бы слепнете.

    Некоторые формы слепоты вызваны болезнями сетчатки, которые повреждают палочки и колбочки. Ученые разрабатывают методы их стимуляции путем вживления электродов. Еще один способ восстановления сетчатки - это пересадка настоящих палочек и колбочек, полученных из тканей человеческого плода.

    Колбочки сосредоточены в ямке на задней стенке сетчатки, а большинство палочек расположено вокруг нее.

    Ямка находится рядом с местом выхода зрительного нерва, где в сетчатке имеется небольшой разрыв. Световые лучи не воздействуют на этот участок а это значит, что в задней стенке каждого глаза есть крохотное "слепое пятно".


    Двое хирургов удаляют катаракту
    с помощью операционного микроскопа,
    который дает многократно увеличенное изображение
    операционного поля.

    Движение глазных яблок

    Обычно лучше всего мы видим центральным участком сетчатки, поэтому, чтобы хорошенько разглядеть предмет, поворачиваем глазные яблоки, а то и всю голову. Глазное яблоко удерживался в глазнице шестью мышцами, обеспечивающими ему значительную свободу движения.

    От повреждений наши глаза ограждены целым набором защитных средств. Они надежно упрятаны в костяные глазницы, выложенные мягкой жировой тканью. При падении или ударе будет скорее повреждена глазница, нежели сам глаз.

    Спереди, в том числе под веками, глаз покрыт сплошной прозрачной оболочкой или конъюнктивой, которая защищает и омывает слезной жидкостью его поверхность. Слезы вырабатываются особыми железами, расположенными в наружных уголках глаз, а их избыток отводится через внутренние уголки.

    Внутренняя оболочка
    век помогает очищать глаз при моргании. Мы смыкаем веки, когда хотим защитить глаза от яркого света или пылинок, царапающих роговицу. Ресницы тоже в какой-то мере помогают защитить глаза от витающей в воздухе пыли. Даже у бровей есть свое назначение. Они отводят от глаз стекающие со лба капли пота.

    Дальнозоркость

    Стереоскопическое зрение

    В кинематографе можно получить трехмерный спецэффект , отпечатав два изображения, снятых под несколько иным ракурсом - одно в красном, а другое в зеленом цвете - и наложив их друг на друга. Зрители надевают специальные очки с разноцветными стеклами, так что один глаз видит только красное изображение, а другой - только зеленое, что и дает в сумме трехмерный эффект.

    Близорукость и дальнозоркость

    К наиболее частым нарушениям зрения относятся близорукость и дальнозоркость. Близорукие люди плохо видят отдаленные предметы, а дальнозоркие то, что находится поблизости. Эти недостатки зрения почти всегда обусловлены формой глазного яблока. Чтобы зрение было безупречным, глазное яблоко тоже должно иметь идеальную форму шара. Однако у близоруких людей передне - задний диаметр глазных яблок удлинен, а у дальнозорких укорочен. Близорукость и дальнозоркость легко исправить, надев очки либо контактные линзы. Недавно ученые открыли новый способ коррекции близорукости путем хирургического уплощения роговицы.

    При радикальной кератотомии на роговице делаются надрезы, и после их заживления роговица становится более плоской. Если операция выполняется с помощью лазера, показатель близорукости вводится в компьютер, и тот сам вычисляет, что нужно сделать с роговицей, чтобы вернуть нормальное зрение.

    Знаете ли вы?

    Человек моргает один - два раза каждые 10 секунд. Каждое моргание длится треть секунды. Это значит, что за 12-часовой день вы тратите на моргание 25 минут. Новорожденные младенцы вообще не моргают и начинают это делать примерно с 6 месяцев.

    Мы плачем от огорчения, но никто толком не знает почему. Во время плача приходится часто сморкаться, потому что избыток слез стекает и полость носа через крошечные отверстия внутри век.

    Морковь в рационе действительно поможет лучше видеть в темноте. Дело в том, что витамин А которым богата морковь, помогает эффективное работать палочкам сетчатки. При глазных болезнях полезно также есть капусту и другие зеленые листовые овощи.

    Человеческий глаз различает до 10 миллионов цветовых оттенков. Однако люди, в отличие от насекомых, не видят ультрафиолетового излучения.

    Астигматизм



    Форма глазного яблока
    может и другим способом повлиять на зрение, вызывая астигматизм. Обычно он встречается вместе с близорукостью или дальнозоркостью. Кривизна стенок роговицы должна быть везде одинаковой, как у футбольного мяча. Но у некоторых людей роговица больше похожа на овальный мяч для регби, и их глаза не могут правильно сфокусировать световые лучи.

    Мы говорим, что глаз косит, когда он направлен в сторону от другого глаза часто к носу или виску, а иногда вверх или вниз. Причиной этого часто бывает "лень" одной из мышц управляющих движением глазного яблока. Чтобы "подстегнуть" косящий глаз к нормальной работе, здоровый глаз закрывают повязкой. Если это не помогает, приходится носить очки или делать операцию.

    Глаукома и катаракта

    Глаукома - это болезнь глаз, при которой увеличивается объем водянистой жидкости в камере между радужной оболочкой и роговицей, вызывая боль и повышение внутриглазного давления. Зрение ухудшается, и, если глаукому не лечить может наступить полная слепота. Иногда с помощью лазера в радужной оболочке прорезается крошечное дренажное отверстие для оттока жидкости, которое позволяет снизить давление внутри.

    Катаракта - это помутнение хрусталика, при котором больной смотрит на мир как бы через замерзающее окно. Катаракта развивается медленно и не причиняет боли. Ее удаляют разрушая хрусталик специальным ультразвуковым зондом. Удаленный хрусталик заменяют миниатюрной пластиковой линзой.

    Оптические иллюзии

    1. Какую цифру вы видите?

    Люди с нормальным цветовым зрением, различающие все три основных цвета - красный, зеленый и синий, увидят здесь число 74.

    Люди с красно-зеленой - наиболее распространенной - цветовой слепотой не отличают красный от зеленого и видят число 21.

    Полной цветовой слепотой страдают единицы. Цветовая слепота, как и цвет волос, наследуется от родителей. Мальчики подвержены ей больше, чем девочки. Избавиться от нее невозможно, но она крайне редко перерастает в серьезную проблему.

    2. Чтобы найти у себя "слепое пятно", отведите голову от монитора на расстояние вытянутой руки. Закройте левый глаз, а правый направьте на левый (зеленый) кружок. Медленно подводите голову к монитору, пока правый (красный) кружок не исчезнет. Значит, его изображение попало как раз на ту точку, где к задней стенке глаза прикреплен зрительный нерв. Это и есть "слепое пятно" сетчатки.

    3. Белый свет можно получить сочетанием трех цветов - красного, синего и зеленого, которые называются основными. В сущности, белый свет является смесью различных цветов. Сочетаясь попарно, основные цвета дают желтый, зеленый и фиолетовый - производные цвета.

    Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв, хиазму, зрительные тракты в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим. Все эти органы и составляют наш зрительный анализатор или зрительную систему.

    Наличие двух глаз позволяет сделать наше зрение стереоскопичным (то есть формировать трехмерное изображение). Правая сторона сетчатки каждого глаза передает через зрительный нерв «правую часть» изображения в правую сторону головного мозга, аналогично действует левая сторона сетчатки. Затем две части изображения — правую и левую — головной мозг соединяет воедино.

    Так как каждый глаз воспринимает «свою» картинку, при нарушении совместного движения правого и левого глаз может быть расстроено бинокулярное зрение. Попросту говоря, у вас начнет двоиться в глазах или вы будете одновременно видеть две совсем разные картинки.

    Основные функции глаза

    • оптическая система, проецирующая изображение;
    • система, воспринимающая и «кодирующая» полученную информацию для головного мозга;
    • «обслуживающая» система жизнеобеспечения.

    Глаз можно назвать сложным оптическим прибором. Его основная задача — «передать» правильное изображение зрительному нерву.

    Роговица прозрачная оболочка, покрывающая переднюю часть глаза. В ней отсутствуют кровеносные сосуды, она имеет большую преломляющую силу. Входит в оптическую систему глаза. Роговица граничит с непрозрачной внешней оболочкой глаза — склерой. См. строение роговицы.

    Передняя камера глаза — это пространство между роговицей и радужкой. Она заполнена внутриглазной жидкостью.

    Радужка — по форме похожа на круг с отверстием внутри (зрачком). Радужка состоит из мышц, при сокращении и расслаблении которых размеры зрачка меняются. Она входит в сосудистую оболочку глаза. Радужка отвечает за цвет глаз (если он голубой — значит, в ней мало пигментных клеток, если карий — много). Выполняет ту же функцию, что диафрагма в фотоаппарате, регулируя светопоток.

    Зрачок — отверстие в радужке. Его размеры обычно зависят от уровня освещенности. Чем больше света, тем меньше зрачок.

    Хрусталик — «естественная линза» глаза. Он прозрачен, эластичен — может менять свою форму, почти мгновенно «наводя фокус», за счет чего человек видит хорошо и вблизи, и вдали. Располагается в капсуле, удерживается ресничным пояском . Хрусталик, как и роговица, входит в оптическую систему глаза.

    Стекловидное тело — гелеобразная прозрачная субстанция, расположенная в заднем отделе глаза. Стекловидное тело поддерживает форму глазного яблока, участвует во внутриглазном обмене веществ. Входит в оптическую систему глаза.

    Сетчатка — состоит из фоторецепторов (они чувствительны к свету) и нервных клеток. Клетки-рецепторы, расположенные в сетчатке, делятся на два вида: колбочки и палочки. В этих клетках, вырабатывающих фермент родопсин, происходит преобразование энергии света (фотонов) в электрическую энергию нервной ткани, т. е. фотохимическая реакция.

    Палочки обладают высокой светочувствительностью и позволяют видеть при плохом освещении, также они отвечают за периферическое зрение. Колбочки, наоборот, требуют для своей работы большего количества света, но именно они позволяют разглядеть мелкие детали (отвечают за центральное зрение), дают возможность различать цвета. Наибольшее скопление колбочек находится в центральной ямке (макуле), отвечающей за самую высокую остроту зрения. Сетчатка прилегает к сосудистой оболочке, но на многих участках неплотно. Именно здесь она и имеет тенденцию отслаиваться при различных заболеваниях сетчатки.

    Склера — непрозрачная внешняя оболочка глазного яблока, переходящая в передней части глазного яблока в прозрачную роговицу. К склере крепятся 6 глазодвигательных мышц. В ней находится небольшое количество нервных окончаний и сосудов.

    Сосудистая оболочка — выстилает задний отдел склеры, к ней прилегает сетчатка, с которой она тесно связана. Сосудистая оболочка ответственна за кровоснабжение внутриглазных структур. При заболеваниях сетчатки очень часто вовлекается в патологический процесс. В сосудистой оболочке нет нервных окончаний, поэтому при ее заболевании не возникают боли, обычно сигнализирующие о каких-либо неполадках.

    Зрительный нерв — при помощи зрительного нерва сигналы от нервных окончаний передаются в головной мозг.

    Зрение - одно из главных чувств человека. Мы доверяем нашим сравнительно небольшим глазам всю зрительную информацию. Мы можем настраивать их и на далекую звезду, и на частичку пыли, видеть при ярком солнечном свете и в темноте.

    Глаз человека работает, как фотоаппарат. Световые лучи от объекта проходят через апертуру (зрачок) и фокусируются хрусталиком на сетчатке, светочувствительном слое на задней стенке глаза. Оптические качества и универсальность глаза намного выше, чем у фотоаппарата. Сетчатка, глазной эквивалент фотопленки, состоит из слоя нервных волокон и светочувствительной пигментной мембраны. Она содержит два вида фоторецепторных клеток: колбочки и палочки.

    Колбочки и палочки

    Колбочки чувствительны к красному, зеленому или синему свету, и сигналы от них дают способность мозгу воспринимать цветовое изображение. Они также обеспечивают дневное зрение. Палочки очень чувствительны при низкой освещенности, но не способны различать цвета. Вот почему предметы теряют цвет ночью. Палочки и колбочки связаны с мозгом нервными клетками, которые идут от задней стенки глаза, формируя зрительный нерв.

    Чтобы объект был четко виден, мышцы глаза растягивают хрусталик и фокусируют свет на сетчатке. Если этот процесс нарушается, изображение делается неясным. В этом случае требуются очки или даже помощь хирурга.

    Мышцы глаза

    Радужка - мышечная, кольцеобразная структура с отверстием в середине, которое называется зрачком. Радужка содержит характерно окрашенный пигмент. Мышцы радужки используются для расширения или сужения зрачка, что позволяет пропускать в глаз больше или меньше света и тем самым создавать оптимальные условия для рассматривания чего-либо. Мышцы радужки переходят в ресничное тело, которое соединяет сосудистую оболочку с радужкой. Ресничное тело состоит из трех частей:
    • ресничный кружок - задняя часть ресничного тела, переходящая в сосудистую оболочку;
    • ресничные отростки - около 70 радиальных складок вокруг ресничного тела;
    • ресничная мышца, контролирующая кривизну хрусталика.

    Фокусирование на сетчатке

    Роговица и водянистая влага вызывают рефракцию (преломление) световых лучей, проходящих внутрь глаза.

    Роговица преломляет большую часть поступающего света. Цель хрусталика - тонкое фокусирование лучей таким образом, чтобы изображение точно попадало на сетчатку. Хрусталик - кристаллическая структура, состоящая из нескольких слоев. Он соединен с мышцами ресничного тела поддерживающими связками. Движения ресничной мышцы изменяют кривизну хрусталика в зависимости от того, насколько далеко или близко находится объект, на котором надо сфокусироваться. Диаграмма внизу (вид глаза изнутри и сбоку) показывает, как хрусталик принимает нужную форму.

    Свет попадает в глаз в виде почти параллельных лучей. При прохождении через роговицу лучи частично фокусируются перед зрачком. Затем хрусталик преломляет свет сильнее, направляя его на сетчатку, где получается перевернутое изображение. Мозг обрабатывает информацию таким образом, что мы воспринимаем изображение в правильном положении.

    Смотрим на близкий объект

    Световые лучи от близкого предмета могут расходиться, требуя большей рефракции. Ресничная мышца сокращается, уменьшая напряжение поддерживающих связок. Хрусталик становится более округлым. При прохождении через округлый хрусталик световые лучи резко сходятся на задней стенке глаза.

    Смотрим на отдаленный объект

    Световые лучи от отдаленного предмета идут почти параллельно. Это требует меньшей рефракции хрусталика. Ресничная мышца расслабляется, и напряжение поддерживающих связок тянет углы хрусталика в стороны. Хрусталик становится более тонким и плоским. Лучи фокусируются на задней стенке глаза.

    Распространенные дефекты глаз

    Два наиболее распространенных дефекта глаз - это близорукость (миопия) и дальнозоркость (гиперметропия).

    Близорукость - неспособность фокусировать отдаленные объекты. Обычно это результат того, что зрительная ось глазного яблока слегка удлинена. Из-за этого изображение отдаленного объекта формируется перед сетчаткой.

    Дальнозоркость , напротив, появляется тогда, когда зрительная ось глазного яблока укорочена.

    В результате точка фокуса света от близкого предмета лежит за сетчаткой.

    Близорукость корректируется ношением очков с расходящимися (вогнутыми) линзами. Дальнозоркость корректируется очками со сходящимися (выпуклыми) линзами.

    Другой частый дефект зрения - старческая дальнозоркость (пресбиопия), которая проявляется в неспособности фокусировать близкие объекты из-за того, что хрусталик теряет эластичность. Обычно дефект появляется в среднем возрасте и корректируется использованием сходящихся линз. Чаще всего именно в этот период времени человеку становятся необходимы очки для коррекции проблем со зрением.

    Астигматизм - результат небольшой деформации глазного яблока, по причине которого изображение объекта искажается. Астигматизм корректируется ношением очков с цилиндрическими линзами, которые нейтрализуют это искажение.

    Строение глаза человека практически ничем не отличается от устройства у многих животных. В частности, глаза человека и осьминога имеют однотипную анатомию.

    Орган зрения человека представляет собой невероятно сложную систему, включающую большое число элементов. И если его анатомия была нарушена, то это становится причиной ухудшения зрения. В худшем случае становится причиной абсолютной слепоты.

    Схема строения глаза человека:

    Глаз человека: внешнее строение

    Внешнее строение глаза представлено следующими элементами:

    • веко;
    • слезный отдел;
    • глазное яблоко;
    • зрачок;
    • роговица;
    • склера.

    Строение века глаза достаточно сложное. Веко защищает глаз от негатива окружающей среды, предупреждая его случайную травматизацию. Представлено мышечной тканью, снаружи защищенной кожным покровом, а изнутри – слизистой оболочкой, которая называется конъюнктива. Именно она обеспечивает увлажнение глаза и беспрепятственное движение века. Его внешний наружный край покрыт ресницами, выполняющими защитную функцию.

    Слезный отдел представлен:

    • слезной железой. Она базируется в верхнем углу наружной части глазницы;
    • добавочными железами. Размещаются внутри конъюнктивальной оболочки и около верхнего края века;
    • отводящими слезными путями. Расположены на внутренней стороне уголков век.

    Слезы выполняют две функции:

    • дезинфицируют конъюнктивальный мешок;
    • обеспечивают необходимый уровень увлажненности поверхности роговицы глаза и конъюнктивы.

    Зрачок занимает центр радужной оболочки и представляет собой круглое отверстие с варьирующим диаметром (2 – 8 мм). Его расширение и сужение зависит от освещенности и происходит в автоматическом режиме. Именно через зрачок свет ложится на поверхность сетчатки, подающей сигналы в мозг. За его работу – расширение и сужение – отвечают мышцы радужки.

    Роговица представлена полностью прозрачной эластичной оболочкой. Она отвечает за сохранение формы глаза и является главной преломляющей средой. Анатомическое строение роговицы глаза у человека представлено несколькими слоями:

    • эпителиальный. Защищает глаз, поддерживает необходимый уровень увлажненности, обеспечивает проникновение кислорода;
    • боуменова мембрана. Защита и питание глаза. Неспособна к самовосстановлению;
    • строма. Основная часть роговицы, содержит коллаген;
    • десцеметова мембрана. Выполняет роль эластичного разделителя между стромой эндотелием;
    • эндотелий. Отвечает за прозрачность роговицы, а также обеспечивает ее питание. При повреждении плохо восстанавливается, вызывая помутнение роговицы.

    Склера (белочная часть) – непрозрачная внешняя оболочка глаза. Белочной поверхностью выстлана боковая и задняя часть глаза, но впереди она плавно трансформируется в роговицу.

    Структура склеры представлена тремя слоями:

    • эписклера;
    • вещество склеры;
    • темная склеральная пластинка.

    Она включает нервные окончания и разветвленную сеть сосудиков. Мышцы, отвечающие за движение глазного яблока, поддерживаются (крепятся) склерой.

    Глаз человека: внутреннее строение

    Внутреннее строение глаза не менее сложное и включает:

    • хрусталик;
    • стекловидное тело;
    • радужную оболочку;
    • сетчатку;
    • зрительный нерв.

    Внутреннее строение глаза человека:

    Хрусталик – еще одна важная преломляющая среда глаза. Он отвечает за фокусировку изображения на его сетчатке. Строение хрусталика простое: это полностью прозрачная двояковыпуклая линза диаметром 3,5–5 мм с изменяющейся кривизной.

    Стекловидное тело – самое большое образование шарообразной формы, заполненное гелеобразным веществом, в котором содержится вода (98%), белок и соли. Оно полностью прозрачное.

    Радужная оболочка глаза размещается непосредственно за роговицей, окружая отверстие зрачка. Она имеет форму правильного круга и пронизана множеством кровеносных сосудов.

    Радужка может иметь разные оттенки. Наиболее распространенный – коричневый. Зеленые, серые и голубые глаза более редки. Радужка голубого цвета является патологией и появилась в результате мутации около 10 тысяч лет назад. Поэтому у всех людей с голубыми глазами единый предок.

    Анатомия радужной оболочки глаза представлена несколькими слоями:

    • пограничный;
    • стромальный;
    • пигментно-мышечный.

    На ее неровной поверхности расположен характерный для глаза конкретного человека рисунок, созданный пигментированными клетками.

    Сетчатка – один из отделов зрительного анализатора. Внешней стороной она прилегает к глазному яблоку, а внутренняя касается стекловидного тела. Строение сетчатки глаза человека сложное.

    Она имеет две части:

    • зрительную, отвечающую за восприятие информации;
    • слепую (в ней полностью отсутствуют чувствительные к свету клетки).

    Работа этой части глаза заключается в приеме, обработке и трансформировании светового потока в зашифрованный сигнал о полученном зрительном изображении.

    Основу сетчатки составляют особые клетки – колбочки и палочки. При плохом освещении за четкость восприятия картинки отвечают палочки. Обязанность колбочек – передача цвета. Глаз новорожденного ребенка в первые недели жизни цвета не различает, поскольку формирование слоя колбочек у детей завершается только к концу второй недели.

    Зрительный нерв представлен множеством переплетенных нервных волокон, включая и центральный канал сетчатки. Толщина зрительного нерва составляет примерно 2 мм.

    Таблица строения глаза человека и описание функций конкретного элемента:

    Значение зрения для человека невозможно переоценить. Мы получаем этот дар природы совсем маленькими детьми, и наша главная задача сохранить его как можно дольше.

    Предлагаем вам посмотреть краткий видеоурок, посвященный строению человеческого глаза.