Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Как приготовить тортилью
  • Имбирный чай — рецепты приготовления
  • Имя Серафима в православном календаре (Святцах)
  • Пастырь и учитель. Духовник Царской Семьи. На Полтавской кафедре
  • Нервный дыхательный центр. Тема: регуляция дыхания

    Нервный дыхательный центр. Тема: регуляция дыхания

    Введение

    Дыхание - это неотъемлемый признак жизни. Мы дышим постоянно с момента рождения и до самой смерти, дышим днем и ночью во время глубокого сна, в состоянии здоровья и болезни.

    В организме человека и животных запасы кислорода ограничены, поэтому организм нуждается в непрерывном поступлении кислорода из окружающей среды. Также постоянно и непрерывно из организма должен удаляться углекислый газ, который всегда образуется в процессе обмена веществ и в больших количествах является токсичным соединением.

    Дыхание - сложный непрерывный процесс, в результате которого постоянно обновляется газовый состав крови и происходит биологическое окисление в тканях. В этом заключается его сущность.

    Нормальное функционирование организма человека возможно только при условии пополнения энергией, которая непрерывно расходуется. Организм получает энергию за счет окисления органических веществ - белков, жиров, углеводов. При этом освобождается скрытая химическая энергия, которая является источником жизнедеятельности, развития и роста организма. Таким образом, значение дыхания состоит в поддержании в организме оптимального уровня окислительно-восстановительных процессов.

    Состав выдыхаемого воздуха весьма непостоянен и зависит от интенсивности обмена веществ, а также от частоты и глубины дыхания. Стоит задержать дыхание или сделать несколько глубоких дыхательных движений, как состав выдыхаемого воздуха изменится.

    Важную роль в жизнедеятельности человека играет регуляция дыхания.

    Регуляция деятельности дыхательного центра, расположенного в продолговатом мозге, осуществляется гуморально, за счет рефлекторных воздействий и нервных импульсов, поступающих из отделов головного мозга.

    В курсовой работе рассмотрены вопросы регуляции деятельности дыхательного центра и механизмы адаптации дыхания к мышечной деятельности.

    Дыхательный центр

    Дыхательным центром называют совокупность нервных клеток, расположенных в разных отделах центральной нервной системы, обеспечивающих координированную ритмическую деятельность дыхательных мышц и приспособление дыхания к изменяющимся условиям внешней и внутренней среды организма.

    Некоторые группы нервных клеток являются необходимыми для ритмической деятельности дыхательных мышц. Они расположены в ретикулярной формации продолговатого мозга, составляя дыхательный центр в узком смысле слова. Нарушение функции этих клеток приводит к прекращению дыхания вследствие паралича дыхательных мышц.

    Дыхательный центр продолговатого мозга посылает импульсы к мотонейронам спинного мозга, иннервирующим дыхательную мускулатуру.

    Мотонейроны, отростки которых образуют диафрагмальные нервы, иннервирующие диафрагму, находятся в передних рогах III…IV шейных сегментов. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах грудного отдела спинного мозга. Отсюда понятно, что при перерезке спинного мозга между грудными и шейными сегментами прекращается реберное дыхание, а диафрагмальное дыхание сохраняется, так как двигательное ядро диафрагмального нерва, находящееся выше места перерезки, сохраняет связь с дыхательным центром и диафрагмой. При перерезке спинного мозга под продолговатым дыхание полностью прекращается и наступает гибель организма от удушения. Однако при такой перерезке мозга продолжаются в течение некоторого времени сокращения вспомогательных дыхательных мышц ноздрей и гортани, которые иннервируются нервами, выходящими непосредственно из продолговатого мозга.

    Уже в древности было известно, что повреждение спинного мозга ниже продолговатого приводит к смерти. В 1812 г. Легаллуа путем перерезки мозга у птиц, а в 1842 г. Флуранс путем раздражения и разрушения участков продолговатого мозга дали объяснение этого факта и привели экспериментальные доказательства местонахождения дыхательного центра в продолговатом мозгу. Флуранс представлял дыхательный центр как ограниченную зону размером с булавочную головку и дал ему название «жизненного узла».

    Н. А. Миславский в 1885 г., применяя методику точечного раздражения и разрушения отдельных участков продолговатого мозга, установил, что дыхательный центр расположен в ретикулярной формации продолговатого мозга, в области дна IV желудочка, и является парным, причем каждая его половина иннервирует дыхательные мышцы той же половины тела. Кроме того, Н. А. Миславский показал, что дыхательный центр представляет собой сложное образование, состоящее из центра вдоха (инспираторный центр) и центра выдоха (экспираторный центр). Он пришел к заключению, что определенный участок продолговатого мозга является центром, регулирующим и координирующим дыхательные движения.

    Выводы Н.А. Миславского подтверждены многочисленными экспериментальными исследованиями, в частности проведенными в последнее время с помощью микроэлектродной техники. При записи электрических потенциалов отдельных нейронов дыхательного центра обнаружено, что в нем существуют нейроны, разряды которых резко учащаются в фазе вдоха, и другие нейроны, разряды которых учащаются в фазе выдоха. Раздражение отдельных точек продолговатого мозга электрическим током, проводимое с помощью микроэлектродов, также выявило наличие нейронов, стимуляция которых вызывает акт вдоха, и других нейронов, стимулирующих акт выдоха.

    Баумгартен в 1956 г. показал, что нейроны дыхательного центра распределены в ретикулярной формации продолговатого мозга, вблизи от striae acusticae (рисунок 1). Точной границы между экспираторными и инспираторными нейронами не существует, но имеются участки, где преобладают одни из них: инспираторные - в каудальном отделе одиночного пучка, (tractus solitarius), экспираторные - в вентральном ядре (nucleus ambiguus).

    Рисунок 1 - Локализация дыхательных центров На рисунке - нижняя часть ствола мозга (вид сзади). ПН - центр пневмотаксиса; ИНСП - инспираторный центр; ЭКСП - экспираторный центр. Центры являются двусторонними, но для упрощения схемы на каждой из сторон изображен только один из центров. Перерезка выше линии 1 на дыхании не отражается. Перерезка по линии 2 отделяет центр пневмотаксиса. Перерезка ниже линии 3 вызывает прекращение дыхания

    Лумсден и другие исследователи в опытах на теплокровных животных нашли, что дыхательный центр имеет более сложную структуру, чем предполагалось ранее. В верхней части варолиева моста находится так называемый пневмотаксический центр, который контролирует деятельность расположенных ниже дыхательных центров вдоха и выдоха и обеспечивает нормальные дыхательные движения. Полагают, что значение пневмотаксического центра состоит в том, что во время вдоха он вызывает возбуждение центра выдоха и, таким образом, обеспечивает ритмическое чередование вдоха и выдоха.

    Деятельность всей совокупности нейронов, образующих дыхательный центр, необходима для сохранения нормального дыхания. Однако в процессах регуляции дыхания принимают участие также вышележащие отделы центральной нервной системы, которые обеспечивают тонкие приспособительные изменения дыхания при различных видах деятельности организма. Важная роль в регуляции дыхания принадлежит большим полушариям головного мозга и их коре, благодаря которой осуществляется приспособление дыхательных движений при разговоре, пении, спорте и трудовой деятельности.

    Регуляция деятельности дыхательного центра осуществляется гуморально, за счет рефлекторных воздействий и нервных импульсов, поступающих из вышележащих отделов головного мозга.

    По И.П. Павлову, деятельность дыхательного центра зависит от химических свойств крови и от рефлекторных влияний, в первую очередь с легочной ткани.

    Нейронам дыхательного центра свойственна ритмическая автоматия. Это видно из того, что даже после полного выключения приходящих к дыхательному центру афферентных импульсов в его нейронах возникают ритмические колебания биопотенциалов, которые можно зарегистрировать электроизмерительным прибором. Впервые это явление обнаружил еще в 1882 г. И. М. Сеченов. Много позднее Эдриан и Бутендайк посредством осциллографа с усилителем зарегистрировали ритмические колебания электрических потенциалов в изолированном стволе мозга золотой рыбки. Б. Д. Кравчинский наблюдал подобные ритмические колебания электрических потенциалов, происходящие в ритме дыхания, в изолированном продолговатом мозге лягушки.

    Автоматическое возбуждение дыхательного центра обусловлено протекающими в нем самом процессами обмена веществ и его высокой чувствительностью к углекислоте. Автоматия центра регулируется нервными импульсами, приходящими от рецепторов легких, сосудистых рефлексогенных зон, дыхательных и скелетных мышц, а также импульсами из вышележащих отделов центральной нервной системы и, наконец, гуморальными влияниями.

    Основная функция дыхательной системы заключается в обеспечении газообмена кислорода и углекислого газа между окружающей средой и организмом в соответствии с его метаболическими потребностями. В целом эту функцию регулирует сеть многочисленных нейронов ЦНС, которые связаны с дыхательным центром продолговатого мозга.

    Под дыхательным центром понимают совокупность нейронов, расположенных в разных отделах ЦНС, обеспечивающих координированную деятельность мышц и приспособление дыхания к условиям внешней и внутренней среды. В 1825 г. П. Флуранс выделил в ЦНС «жизненный узел», Н.А. Миславский (1885) открыл инспираторную и экспираторную части, а позже Ф.В. Овсянниковым был описан дыхательный центр.

    Дыхательный центр представляет собой парное образование, состоящее из центра вдоха (инспираторного) и центра выдоха (экспираторного). Каждый центр регулирует дыхание одноименной стороны: при разрушении дыхательного центра с одной стороны наступает прекращение дыхательных движений с этой стороны.

    Нейроны верхнего отдела моста, регулирующие акт дыхания, были названы пневмотаксическим центром. На рис. 6.6" показано расположение нейроновдыхательного центра в различных отделах ЦНС. Центр вдоха обладает автоматизмом и находится в тонусе. Центр выдоха регулируется из центра вдоха через пневмотаксичес- кий центр.

    Рис. 6.6.

    ПН - пневмотаксический центр; ИНСП - инспираторный; ЭКСП - экспираторный. Центры являются двусторонними, но для упрощения схемы на каждой из сторон изображен только один. Перерезка по линии 1 не отражается на дыхании, по линии 2 отделяется пневмотаксический центр, ниже линии 3 наступает остановка дыхания

    В структурах моста тоже различают два дыхательных центра. Один из них - пневмотаксический - способствует смене вдоха на выдох (за счет переключения возбуждения из центра вдоха на центр выдоха);

    второй центр осуществляет тоническое влияние на дыхательный центр продолговатого мозга.

    Экспираторный и инспираторный центры находятся в реципрок- ных отношениях. Под влиянием спонтанной активности нейронов инспираторного центра возникает акт вдоха, во время которого при растяжении легких возбуждаются механорецепторы. Импульсы от механорецепторов по афферентным нейронам возбуждающего нерва поступают в дыхательный центр и вызывают возбуждение экспираторного и торможение инспираторного центра. Это обеспечивает смену вдоха на выдох.

    В смене вдоха на выдох существенное значение имеет пневмотак- сический центр, который свое влияние осуществляет через нейроны экспираторного центра (рис. 6.7).

    Рис. 6.7.

    • 1 - инспираторный центр; 2 - пневмотаксический центр; 3 - экспираторный центр;
    • 4 - механорецепторы легкого

    В момент возбуждения инспираторного центра продолговатого мозга одновременно возникает возбуждение в инспираторном отделе пневмотаксического центра. От последнего по отросткам его нейронов импульсы приходят к экспираторному центру продолговатого мозга, вызывая его возбуждение и по индукции - торможение инс- пираторного центра, что приводит к смене вдоха на выдох.

    Таким образом, регуляция дыхания (рис. 6.8) осуществляется благодаря согласованной деятельности всех отделов ЦНС, объединенных понятием дыхательного центра. На степень активности и взаимодействие отделов дыхательного центра влияют различные гуморальные и рефлекторные факторы.

    Автомашин дыхательного центра. Способность дыхательного центра к автоматии впервые обнаружена И.М. Сеченовым (1882) в опытах на лягушках в условиях полной деафферентации животных. В этих экспериментах, несмотря на то что афферентные импульсы не поступали в ЦНС, регистрировались колебания потенциалов в дыхательном центре продолговатого мозга.

    Об автоматии дыхательного центра свидетельствует опыт Гей- манса с изолированной головой собаки. Ее мозг был перерезан на уровне моста и лишен различных афферентных влияний (были перерезаны языкоглоточный, язычный и тройничный нервы). В этих условиях к дыхательному центру не поступали импульсы не только от легких и дыхательных мышц (вследствие предварительного отделения головы), но и от верхних дыхательных путей (вследствие перерезки названных нервов). Тем не менее у животного сохранились ритмические движения гортани. Этот факт можно объяснить только наличием ритмической активности нейронов дыхательного центра.

    Автоматия дыхательного центра поддерживается и изменяется под влиянием импульсов от дыхательных мышц, сосудистых рефлексогенных зон, различных интеро- и экстерорецепторов, а также под влиянием многих гуморальных факторов (pH крови, содержание углекислого газа и кислорода в крови и др).

    Влияние углекислого газа на состояние дыхательного центра. Влияние углекислого газа на активность дыхательного центра особенно ярко демонстрируется в опыте Фредерика с перекрестным кровообращением. У двух собак перерезают сонные артерии и яремные вены и соединяют перекрестно: периферический конец сонной артерии соединяют с центральным концом этого же сосуда второй собаки. Так же перекрестно соединяют и яремные вены: центральный конец яремной вены первой собаки соединяется с периферическим концом яремной вены второй собаки. В результате кровь от туловища первой собаки поступает к голове второй собаки, а кровь от туловища второй собаки - к голове первой собаки. Все другие сосуды перевязывают.

    После такой операции у первой собаки производили зажатие трахеи (удушение). Это приводило к тому, что через некоторое время наблюдались увеличение глубины и частоты дыхания у второй собаки

    (гиперпноэ), тогда как у первой собаки наступала остановка дыхания (апноэ). Объясняется это тем, что у первой собаки в результате зажатия трахеи не осуществлялся обмен газов, а в крови увеличивалось содержание углекислого газа (наступала гиперкапния) и уменьшалось содержание кислорода. Эта кровь поступала к голове второй собаки и оказывала влияние на клетки дыхательного центра, следствием чего явилось гиперпноэ. Но в процессе усиленной вентиляции легких в крови второй собаки уменьшалось содержание углекислого газа (гипокапния) и увеличивалось содержание кислорода. Кровь с уменьшенным содержанием углекислого газа поступала к клеткам дыхательного центра первой собаки, и раздражение последнего уменьшалось, что приводило к апноэ.

    Таким образом, увеличение содержания углекислого газа в крови приводит к увеличению глубины и частоты дыхания, а уменьшение содержания углекислого газа и увеличение кислорода - к его уменьшению вплоть до остановки дыхания. В тех наблюдениях, когда первой собаке давали дышать различными газовыми смесями, наибольшее изменение дыхания наблюдалось при увеличении содержания углекислого газа в крови.

    Зависимость деятельности дыхательного центра от газового состава крови. Деятельность дыхательного центра, определяющая частоту и глубину дыхания, зависит прежде всего от напряжения газов, растворенных в крови, и концентрации в ней водородных ионов. Ведущее значение в определении величины вентиляции легких имеет напряжение углекислого газа в артериальной крови: оно как бы создает запрос на нужную величину вентиляции альвеол.

    Для обозначения повышенного, нормального и сниженного напряжения углекислого газа в крови используют термины «гиперкапния», «нормокапния» и «гипокапния» соответственно. Нормальное содержание кислорода называется нормоксией, недостаток кислорода в организме и тканях - гипоксией , в крови - гипоксемией. Увеличение напряжения кислорода есть гиперксия. Состояние, при котором гиперкапния и гипоксия существуют одновременно, называется асфиксией.

    Нормальное дыхание в состоянии покоя называется эйпноэ. Гиперкапния, а также снижение величины pH крови (ацидоз) сопровождаются непроизвольным увеличением вентиляции легких - гиперпноэ , направленным на выведение из организма избытка углекислого газа. Вентиляция легких возрастает преимущественно за счет глубины дыхания (увеличения дыхательного объема), но при этом возрастает и частота дыхания.

    Гипокапния и повышение уровня pH крови ведут к уменьшению вентиляции, а затем и к остановке дыхания - апноэ.

    Развитие гипоксии вначале вызывает умеренное гиперпноэ (в основном в результате возрастания частоты дыхания), которое при увеличении степени гипоксии сменяется ослаблением дыхания и его остановкой. Апноэ вследствие гипоксии смертельно опасно. Его причиной является ослабление окислительных процессов в мозге, в том числе в нейронах дыхательного центра. Гипоксическому апноэ предшествует потеря сознания.

    Гиперкапнию можно вызвать вдыханием газовых смесей с повышенным до 6% содержанием углекислого газа. Деятельность дыхательного центра человека находится под произвольным контролем. Произвольная задержка дыхания на 30-60 с вызывает асфиксические изменения газового состава крови, после прекращения задержки наблюдается гиперпноэ. Гипокапнию легко вызывать произвольным усилением дыхания, а также избыточной искусственной вентиляцией легких (гипервентиляция). У бодрствующего человека даже после значительной гипервентиляции остановки дыхания обычно не возникает вследствие контроля дыхания передними отделами мозга. Гипокапния компенсируется постепенно, в течение нескольких минут.

    Гипоксия наблюдается при подъеме на высоту вследствие снижения атмосферного давления, при крайне тяжелой физической работе, а также при нарушении дыхания, кровообращения и состава крови.

    Во время сильной асфиксии дыхание становится максимально глубоким, в нем принимают участие вспомогательные дыхательные мышцы, возникает неприятное ощущение удушья. Такое дыхание называют диспноэ.

    В целом поддержание нормального газового состава крови основано на принципе отрицательной обратной связи. Так, гиперкапния вызывает усиление активности дыхательного центра и увеличение вентиляции легких, а гипокапния - ослабление деятельности дыхательного центра и уменьшение вентиляции.

    Рефлекторные влияния на дыхание с сосудистых рефлексогенных зон. Дыхание особенно быстро реагирует на различные раздражения. Оно быстро изменяется под влиянием импульсов, приходящих с экс- теро- и интерорецепторов к клеткам дыхательного центра.

    Раздражителем рецепторов могут быть химические, механические, температурные и другие воздействия. Наиболее ярко выраженным механизмом саморегуляции является изменение дыхания под влиянием химического и механического раздражения сосудистых рефлексогенных зон, механического раздражения рецепторов легких и дыхательных мышц.

    Синокаротидная сосудистая рефлексогенная зона содержит рецепторы, чувствительные к содержанию углекислого газа, кислорода и водородных ионов в крови. Это отчетливо показано в опытах Гейманса с изолированным каротидным синусом, который отделяли от сонной артерии и снабжали кровью от другого животного. С ЦНС каротидный синус был соединен только нервным путем - сохранился нерв Геринга. При повышении содержания углекислого газа в крови, омывающей каротидное тельце, возникает возбуждение хеморецепторов этой зоны, вследствие чего увеличивается количество импульсов, идущих к дыхательному центру (к центру вдоха), и наступает рефлекторное увеличение глубины дыхания.


    Рис. 6.8.

    К - кора; Гт-гипоталамус; Пвц - пневмотаксический центр; Апц - центр дыхания (экспираторный и инспираторный); Ксин - каротидный синус; Бн - блуждающий нерв;

    См - спинной мозг; С 3 -С 5 - шейные сегменты спинного мозга; Дфн - диафрагмальный нерв; ЭМ - экспираторные мышцы; ИМ - инспираторные мышцы; Мнр - межреберные нервы; Л - легкие; Дф - диафрагма; 77), - 77) 6 - грудные сегменты спинного мозга

    Увеличение глубины дыхания наступает и при воздействии углекислого газа на хеморецепторы аортальной рефлексогенной зоны.

    Такие же изменения дыхания наступают при раздражении хеморецепторов названных рефлексогенных зон кровью с повышенной концентрацией водородных ионов.

    В тех же случаях, когда в крови увеличивается содержание кислорода, раздражение хеморецепторов рефлексогенных зон уменынается, вследствие чего ослабевает поток импульсов к дыхательному центру и наступает рефлекторное уменьшение частоты дыхания.

    Рефлекторным возбудителем дыхательного центра и фактором, влияющим на дыхание, является изменение АД в сосудистых рефлексогенных зонах. При повышении АД раздражаются механорецепторы сосудистых рефлексогенных зон, вследствие чего наступает рефлекторное угнетение дыхания. Уменьшение величины АД приводит к увеличению глубины и частоты дыхания.

    Рефлекторные влияния на дыхание с механорецепторов легких и дыхательных мышц. Существенным фактором, вызывающим смену вдоха и выдоха, являются влияния с механорецепторов легких, что впервые было обнаружено Герингом и Брейером (1868). Они показали, что каждый вдох стимулирует выдох. Во время вдоха при растяжении легких раздражаются механорецепторы, расположенные в альвеолах и дыхательных мышцах. Возникшие в них импульсы по афферентным волокнам блуждающего и межреберных нервов приходят к дыхательному центру и вызывают возбуждение экспираторных и торможение инспираторных нейронов, вызывая смену вдоха на выдох. Это один из механизмов саморегуляции дыхания.

    Подобно рефлексу Геринга-Брейера, осуществляются рефлекторные влияния на дыхательный центр от рецепторов диафрагмы. Во время вдоха в диафрагме при сокращении ее мышечных волокон раздражаются окончания нервных волокон, возникающие в них импульсы поступают в дыхательный центр и вызывают прекращение вдоха и возникновение выдоха. Этот механизм имеет особенно большое значение при усиленном дыхании.

    Рефлекторные влияния на дыхание с различных рецепторов организма. Рассмотренные рефлекторные влияния на дыхание относятся к постоянно действующим. Но существуют различные кратковременные воздействия почти со всех рецепторов нашего организма, которые влияют на дыхание.

    Так, при действии механических и температурных раздражителей на экстерорецепторы кожи наступает задержка дыхания. При действии холодной или горячей воды на большую поверхность кожи возникает остановка дыхания на вдохе. Болевое раздражение кожи вызывает резкий вдох (вскрикивание) с одновременным закрытием голосовой щели.

    Некоторые изменения акта дыхания, возникающие при раздражении слизистых оболочек дыхательных путей, получили название защитных дыхательных рефлексов: кашель, чихание, задержка дыхания, наступающая при действии резких запахов, и др.

    Роль коры больших полушарий головного мозга в регуляции дыхания.

    Дыхание - одна из вегетативных функций, которая имеет произвольную регуляцию. Каждый человек может произвольно изменить ритм и глубину дыхания, задержать его на определенное время (от 20-60 до 240 с). Возможность произвольного изменения дыхания свидетельствует о регулирующем влиянии коры больших полушарий на данную функцию (рис. 6.9 ).


    Рис. 6.9.

    Яркие доказательства корковой регуляции дыхания получены методом условных рефлексов. Условный дыхательный рефлекс можно выработать на действие любого внешнего раздражителя, если сочетать его с каким-нибудь безусловным дыхательным рефлексом.

    Г.П. Конради и З.П. Бабешкина в качестве безусловного раздражителя использовали вдыхание газовой смеси с повышенным содержанием углекислого газа (при этом возрастает легочная вентиляция). Вдыханию смеси предшествовал звук метронома на 5-10 с. После

    10-15 сочетаний вдыхания смеси и звука метронома один звук метронома (без вдыхания смеси) вызывал увеличение легочной вентиляции.

    Предстартовое изменение дыхания у спортсменов также является показателем его условно-рефлекторной регуляции. Ее значение в данном случае заключается в приспособлении организма к повышенной физической нагрузке, требующей увеличения газообмена. Предстартовое изменение (увеличение) глубины и частоты дыхания (одновременно с изменением деятельности сердечно-сосудистой системы) обеспечивает более быструю доставку кислорода к работающим мышцам и удаление из крови углекислого газа.

    Регуляция дыхания сформировалась у человека в процессе эволюции в связи с формированием речи. Произношение осуществляется на выдохе, поэтому для осуществления речи необходимо менять глубину и ритм дыхания, благодаря чему можно достигать декламации, пения и т.д.

    Вопросы и задания

    • 1. Перечислите легочные объемы и емкости. В чем разница? Ответ поясните.
    • 2. Какова роль больших полушарий головного мозга в регуляции дыхания?
    • 3. Один человек утверждает, что легкие расширяются и потому в них входит воздух, а другой - что воздух входит в легкие и поэтому они расширяются. Кто прав?
    • 4. На собаках проведены эксперименты: 1) перерезка между шейным и грудным отделами спинного мозга; 2) перерезка между продолговатым и спинным мозгом. Какие изменения дыхания будут наблюдаться в данных экспериментах?
    • 5. Хорошие пловцы, перед тем как нырнуть, в течение нескольких секунд форсированно дышат. Для чего они так делают? Каков механизм изменения дыхания в этом случае?
    • 6. Существуют экспериментальные установки, позволяющие животным (кошка, собака, крыса) «дышать водой», насыщенной кислородом. Установка полностью удовлетворяет потребность животного в кислороде. Почему все же животные через некоторое время умирают, а человек вообще не может «дышать водой»? Объясните это, используя закон Бернулли о разности давлений и вязкости среды, а также данные о растворимости газов в водной и воздушной среде.
    • 7. Может ли опыт Фредерика с перекрестным кровообращением у двух собак считаться безупречным для доказательства гуморальных механизмов влияния избытка С0 2 или недостатка 0 2 в крови на дыхательный центр? Поясните.
    • См.: Леонтьева Н.Н, Маринова К.В. Указ. соч.
    • См.: Резанова, Е.Л., Антонова, И.П., Резанов, А.А. Указ. соч.

    Введение…………………………………………………………………….3

    1. Дыхательный центр продолговатого мозга…………………………...4

    2. Нейронная организация дыхательного центра………………………..6

    3. Взаимодействие нейронов дыхательного центра……………………...7

    4. Схема саморегуляции вдоха и выдоха…………………………………9

    Заключение………………………………………………………………...11

    Литература…………………………………………………………………12

    Введение

    Уже к Галену (I в.) было известно, что при отделении голов­ного мозга от спинного наступает остановка дыхания. На осно­вании результатов перерезок и электрического раздражения в об­ласти продолговатого мозга Н. А. Миславский (1885) пришел к заключению, что дыхательный центр находится в ретикулярной формации продолговатого мозга по обеим сторонам шва на уров­не корешков подъязычного нерва. Н. А. Миславский впервые привел доказательства функционального деления дыхательного центра на инспираторную и экспираторную части.

    По современным представлениям, механизм, регулирующий дыхание у высших позвоночных животных, состоит из трех уровней.

    Первый находится в спинном мозге. Это - центры диафрагмальных и межреберных нервов, обеспечивающие сокращение дыхательной мускулатуры.

    Второй уровень регуляции представлен дыхательным центром продолговатого мозга, в который поступает афферентация от ды­хательного аппарата, а также от основных сосудистых зон. Этот центр обеспечивает ритмичную смену фаз дыхания и интеграцию деятельности спинномозговых центров дыхательной мускулату­ры. Однако дыхательный центр не способен обеспечить дыхатель­ные реакции без связи с верхними отделами головного мозга.

    Третий уровень регуляции дыхания обеспечивается ассоциацией центров, которые находятся на разных уровнях головного мозга, включая кору больших полушарий.

    1. Дыхательный центр продолговатого мозга

    Дыхательный центр, как и любой другой центр, представляет собой совокупность ней­ронов, расположенных на различных уровнях ЦНС, достаточных для приспособительной регуляции газообмена.

    В продолговатом мозге находится главная часть дыхательного центра, о чем свидетельствуют исследования М.Флуранса (1794 - 1867), обнаружившего, что разрушение медиальной части про­долговатого мозга в нижнем углу ромбовидной ямки ведет к пол­ной остановке дыхания. Позже Н.А. Миславский (1885) устано­вил наличие двух структур, ответственных за вдох и выдох.

    Мост играет важную роль в регуляции продолжительности фаз вдоха, выдоха и паузы между ними. Нейроны моста при взаимодей­ствии с нейронами продолговатого мозга обеспечивают нормаль­ный цикл дыхания.

    Мотонейроны спинного мозга получают импульсы от нейронов продолговатого мозга и посылают их к дыхательным мышцам по диафрагмальному и межреберным нервам. Центр диафрагмальных нервов находится в основном в 3 - 4-м шейных сегментах спин­ного мозга. Центры межреберных нервов, иннервирующих муску­латуру грудной клетки, локализуются в грудном отделе спинного мозга (4 - 10-й сегменты), иннервация мышц брюшной стенки осуществляется Th4-L3-сегментами.

    В регуляции дыхания принимают участие также средний мозг , гипоталамус , лимбико-ретикулярный комплекс , кора большого мозга . В частности, средний мозг играет важную роль в регуляции тонуса всей мускулатуры организма, в том числе и дыхательной. Гипотала­мус выполняет интегрирующую роль в вегетативном обеспечении соматической деятельности, в том числе участвует в регуляции ча­стоты и глубины дыхания при физической деятельности, повыше­нии температуры внешней и внутренней среды (тепловая одышка).

    Об участии коры большого мозга в регуляции дыхания свиде­тельствует тот факт, что частоту и глубину дыхания можно изме­нять произвольно в широком диапазоне. Но произвольная задерж­ка дыхания не может быть длительной, так как наступает непре­одолимая потребность возобновить дыхание. Об участии коры мозга свидетельствует также усиление дыхания перед стартом или по любому условно-рефлекторному сигналу. Минимальная физичес­кая нагрузка (несколько шагов в течение 1 - 2 мин) бескоркового животного в эксперименте вызывает у него длительную одышку. Благодаря коре большого мозга при выполнении физических уп­ражнений интенсивность дыхания становится адекватной потреб­ностям организма (более экономное дыхание). Это связано также и с тем, что сами движения становятся более экономичными.

    Под автоматией дыхательного центра понимают циркуляцию возбуждения в его нейронах, обеспечивающую саморегуляцию вдоха и выдоха. Автоматию дыхательного центра впервые наблю­дал с помощью гальванометра на изолированном продолговатом мозге лягушки И. М. Сеченов (1882). Ритмическую активность изо­лированного продолговатого мозга золотой рыбки зарегистриро­вал Эдриан (1931). С помощью микроэлектродной техники под­тверждено, что продолговатый мозг способен генерировать элек­трические импульсы. Основная часть нейронов дыхательного цен­тра в продолговатом мозге относится к ретикулярной формации, эти нейроны обладают свойством спонтанной активности. Кроме спонтанной активности автоматии дыхательного центра способ­ствуют гуморальные влияния непосредственно на центр, главным образом СО2, а также афферентная импульсация от рефлексоген­ных зон (от хемо- и механорецепторов), взаимодействие возбуж­дающих и тормозящих влияний нейронов дыхательного центра, возбуждающих влияние вышележащих отделов ЦНС.

    2. Нейронная организация дыхательного центра

    Нейронная организация дыхательного центра (продолговатый мозг и мост). Дыхательные нейроны, возбуждающиеся в различ­ные фазы дыхательного цикла, обнаружены почти на всем протя­жении продолговатого мозга. Однако в обеих половинах продолго­ватого мозга есть участки ретикулярной формации, где имеются скопления дыхательных нейронов. Как.отметил Р.Баумгартен (1956), в правой и левой половине продолговатого мозга имеется по два таких скопления - дорсальное и вентральное, которые локализуются вблизи задвижки (obex), расположенной у нижнего угла ромбовидной ямки.

    Дорсальная группа дыхательных нейронов примыкает к ядру одиночного пучка и состоит на 95 % из инспираторных нейронов (возбуждающихся в фазу вдоха, условно - центра вдоха). Аксоны этих нейронов идут к другим нейронам дыхательного центра и к мото­нейронам диафрагмального нерва в передних рогах шейного отде­ла, главным образом сегменты 2-4. Нейроны диафрагмального ядра спинного мозга возбуждаются непрерывно, но с учащением в фазу вдоха или залпами, как и связанные с ними нейроны про­долговатого мозга. Коллатерали от аксонов нейронов дорсального дыхательного ядра идут также в вентральное дыхательное ядро продолговатого мозга, образуя возбуждающие синапсы на его инспираторных нейронах и тормозные - на экспираторных. Экс­пираторные нейроны в дорсальном ядре встречаются редко (не­сколько процентов).

    Вентральная группа дыхательных нейронов расположена в обла­сти обоюдного, ретроамбигуального ядер и простирается до 2-го шейного сегмента спинного мозга включительно. В вентральной группе содержатся инспираторные и экспираторные нейроны (пос­ледних большинство). Часть нейронов вентральной группы посы­лает свои аксоны в спинной мозг к мотонейронам межреберных мышц и мышц живота, часть - к ядру диафрагмального нерва, часть - к другим нейронам дыхательного центра. Инспираторные нейроны в спинном мозге расположены в основном во 2 -6 м, а экспираторные - в 8 -10-м грудных сегментах. В вентральной груп­пе находятся эфферентные нейроны центров блуждающего не­рва, регулирующие просвет воздухоносного пути в ритме дыха­тельного цикла. Максимум активности этих нейронов регистриру­ется в конце выдоха, что ведет к сужению просвета воздухонос­ного пути в результате повышения тонуса гладких мышц и спо­собствует выдоху; минимум активности нейронов наблюдается в конце вдоха, что сопровождается уменьшением тонуса гладких мышц воздухоносного пути, расширяет его и облегчает вдох.


    3. Взаимодействие нейронов дыхательного центра

    Взаимодействие нейронов дыхательного центра заключается в следующем: ритмическая смена вдоха и выдоха (постоянное их че­редование) обеспечивается циркуляцией возбуждения в дыхатель­ных нейронах продолговатого мозга, т. е. главной части дыхатель­ного центра, а также взаимодействием импульсации нейронов про­долговатого мозга с импульсацией дыхательных нейронов моста и рефлексогенных зон, главной из которых является легочная (механорецепторы). Эфферентные импульсы ритмично поступают по диафрагмальному и межреберным нервам к дыхательным мышцам, что ведет к их сокращению (вдох). Отсутствие импульсации сопро­вождается расслаблением дыхательной мускулатуры (выдох). Цикл дыхания у человека состоит из вдоха, выдоха и паузы.

    С учетом этого дыхательные нейроны классифицируют на группы.

    1. Ранние инспираторные и экспираторные нейроны, дающие ко­роткую серию импульсов соответственно перед вдохом или перед выдохом.

    2. Поздние инспираторные и экспираторные нейроны, возбуждаю­щиеся соответственно после начала вдоха или выдоха.

    3. Полные инспираторные и экспираторные нейроны, возбужде­ние которых совпадает соответственно с фазой вдоха или выдоха.

    4. Инспираторно-экспираторные нейроны начинают возбуждать­ся в фазе вдоха и заканчивают в начале выдоха.

    5. Экспираторно-инспираторные нейроны начинают возбуждать­ся во время выдоха и заканчивают в начале вдоха.

    6. Непрерывно активные нейроны, т.е. постоянно возбуждающи­еся, но увеличивающие импульсацию во время вдоха или выдоха.

    Имеются и другие классификации нейронов дыхательного цен­тра. Разные по характеру импульсации дыхательные нейроны рас­положены диффузно. Возбуждающее и тормозящее взаимодействие всех типов нейронов обеспечивает ритмическую деятельность ды­хательного центра.

    Большинство экспираторных нейронов является антиинспираторными, и только часть из них посылает свои импульсы к мышцам выдоха. Они возбуждаются под влиянием афферентной импульса­ции блуждающих нервов и нейронов моста. Большинство инспираторных нейронов обладает непрерывной спонтанной импульсной активностью, которая преобразуется в фазную благодаря тормоз­ным реципрокным влияниям экспираторных и поздних инспираторных нейронов. После перерезки блуждающих нервов и ствола мозга между мостом и продолговатым мозгом наблюдается дли­тельный тетанус инспираторных мышц (инспираторное апноэ), что также свидетельствует о постоянной активности инспиратор­ных нейронов. Однако после выхода животного из наркоза восста­навливается ритмичное дыхание, что демонстрирует высокую сте­пень автоматии главной части дыхательного центра продолгова­того мозга и компенсационные возможности ЦНС в случае ее по­вреждения. Срез основных дыхательных нейронов толщиной всего лишь 0,5 мм продолжает генерировать дыхательный ритм in vitro.

    4. Схема саморегуляции вдоха и выдоха.

    Каждый дыхательный цикл начинается с возбуждения ранних инспираторных нейронов. Затем возбуждение переходит на полные инспиратор­ные нейроны. В процессе циркуляции возбужде­ния импульсы по возвратным связям поступают к предшествую­щим нейронам и тормозят их. Полные инспираторные и экспираторные нейроны по нисходящим путям посылают импульсы к мо­тонейронам спинного мозга, иннервирующим дыхательную мус­кулатуру.

    Поскольку при спокойном дыхании выдох обычно осуществляется за счет потенциальной энергии, накопленной во время вдоха, экспираторные нейроны и мышцы не показаны. Роль моста в регуляции вдоха и выдоха доказана в опытах с перерезкой ствола мозга (Люмсден, 1923): при отделении моста вдох становится очень длительным, преры­вается короткими выдохами. При перерезке блуждающих нервов дыхание становится резко замедленным и глубоким, вдох про­должается дольше обычного. Таким образом, импульсация от ней­ронов моста и афферентная импульсация, поступающая в про­долговатый мозг по блуждающим нервам, обеспечивают смену вдоха на выдох, причем главную роль играют нейроны моста. Об этом свидетельствуют более грубые нарушения дыхания после от­деления моста, нежели после перерезки блуждающих нервов.

    В мосту обнаружены две области скопления нейронов, участвую­щих в регуляции дыхания. Одна группа дыхательных нейронов находится в ростральной части - на 2 мм ниже задних холмиков четверохолмия, медиальнее парабрахиального ядра (пневмотаксический центр по Люмсдену). Возбуждение этих нейронов облег­чает смену вдоха на выдох. В средней и каудальной областях моста также обнаружены дыхательные нейроны (возбуждаются в ритме дыхания), но они, напротив, тормозят смену вдоха на выдох. В целом нейроны моста способствуют смене вдоха на выдох и дела­ют дыхательный цикл более плавным. Считают, что дыхательные нейроны моста получают импульсы от инспираторных нейронов продолговатого мозга и посылают импульсы обратно в продолго­ватый мозг, где они возбуждают экспираторные нейроны и тор­мозят инспираторные. Поскольку в мосте обнаружены две группы нейронов, взаимодействие которых с нейронами продолговатого мозга обеспечивает плавность дыхательного цикла, применение понятия «пневмотаксический центр» утратило смысл.

    Роль блуждающих нервов в регуляции вдоха и выдоха доказали К. Геринг и Дж. Брейер в опыте с раздуванием легких воздухом в различные фазы дыхательного цикла. Оказалось, что раздувание легких воздухом тормозит вдох, после чего наступает выдох. Уменьшение объема легких (забор воздуха) тормозит выдох, ус­коряет вдох. После перерезки блуждающих нервов раздувание легких не изменяет характер дыхания - тормозный эффект от­сутствует.

    Заключение

    Итак, результаты опытов многих ученых свидетельствуют о том, что во время вдоха вследствие растяжения легких возбуждаются их механорецепторы (рецепторы растяжения). Афферентные импульсы по блуждающим нервам поступают к дыхательным нейронам, тормозят вдох и обес­печивают смену вдоха на выдох (рефлексы Геринга-Брейера). При этом возбуждаются экспираторные и поздние инспираторные ней­роны, которые, в свою очередь, тормозят ранние инспираторные нейроны. Афферентные импульсы от легких по блуждающим нервам поступают также к дыхательным нейронам моста. Рецепторы рас­тяжения легких локализуются преимущественно в гладкомышечных стенках трахеи и бронхов всех калибров. В каждом легком име­ется около 1000 рецепторов, они возбуждаются при вдохе. Чем глубже вдох, тем выше их активность. Возбудимость рецепторов растяжения различна, некоторые из них (низкопороговые) воз­буждаются не только при вдохе, но и при выдохе. Рецепторы рас­тяжения легких являются медленно адаптирующимися.

    Значение проприорецепторов дыхательных мышц в регуляции дыхания является таким же, как и для всей скелетной мускула­туры. Причем главную роль играют проприорецепторы (мышеч­ные веретена и сухожильные рецепторы) межреберных мышц и мышц стенки живота, которые содержат большое количество этих рецепторов. Диафрагма содержит очень мало проприорецепторов. Поэтому активность нейронов диафрагмального нерва практи­чески полностью определяется импульсами дыхательных нейро­нов продолговатого мозга; активность мотонейронов межребер­ных нервов зависит от импульсов продолговатого мозга и от аф­ферентных импульсов проприорецепторов дыхательной муску­латуры. Импульсация от проприорецепторов усиливает сокраще­ние дыхательной мускулатуры и способствует смене вдоха на выдох.

    Литература.


    1. Бехтерева Н.П. «Не люблю, когда человеческий мозг сравнивают с компьютером»// Смена.-2000.-№4.-с.244-251.

    2. Блум А. Мозг, разум, поведение. Пер. с англ. М.:1995. – 356с.

    3. Бычков С.М., Кузьмина С.А. Биохимия мозга. //Вопросы медицинской химии. – 1986.вып 1.-с.21.

    4. Воронин Л.Г. Физиология ВНД. М. Высная школа, 1999. – 312с.

    5. Гомазков О. Мозг – ХХI: Закон доминанты.// Знание-сила.-1995.-№5.-с.51-57.

    5. Камбарова Д. Болезни мозга глазами физиолога.\\ Новая еженедельная газета.-1995.1февр.с.2.

    6. Мозг. Пер. с англ. Под ред. П.В.Симонова. М.:Мир. – 1982. -287с..

    7. Моренков Э.Д. Морфология мозга человека.М.:1983.-276с.

    8. Михайлов А.С. Физики задумываются над механизмом работы мозга.//Природа. 1987. -№3.-с.15-26.

    9. Смирнов В.М. Физиология ЦНС: уч. пос. М. Изд. Центр «Академия», 2004. – 352с.

    10. Эвелин Пирс. Анатомия и физиология мозга. Пер. с англ. М.: 2003.-315с.

    Дыхательный центр представляет собой парное скопление нейронов (клеток) головного мозга, объединенных общей функцией. За счет его работы дыхательные мышцы сокращаются и расслабляются в определенной последовательности, а сам процесс дыхания подстраивается под окружающую среду и состояние организма.

    Данная анатомическая структура находится в мосте и продолговатом мозге. Помимо этого анатомического отдела, здесь же располагаются и такие важные центры, как жевания, глотания, слюноотделения и другие. Повреждение продолговатого мозга человека чаще всего приводит к смерти от паралича дыхательных мышц, разобщения процесса дыхания, и, как следствие, нарастания дыхательной недостаточности.

    В дыхательном центре существуют несколько значимых отделов. Инспираторный отдел отвечает за регуляцию вдоха, экспираторный — выдоха. Повреждение какого-либо одного отдела блокирует эту функцию на той стороне, где находится очаг поражения. Экспираторный отдел располагается в вентральном ядре продолговатого мозга, в то время как инспираторный — в дорсальном ядре. Процесс координации вдохов и выдохов контролируется пневмотаксическим центром, который находится в области варолиева моста. Данный отдел обладает функцией автоматизма, то есть, самостоятельно генерирует нервный импульс. Возбуждение этого центра осуществляется вдохом, за которым должен следовать своевременный выдох. В мосте располагается также отдел, регулирующий тонус дыхательного центра.

    Работа дыхательного центра

    Функция дыхательного центра контролируется совокупностью факторов. Рассмотрим их компоненты:

    1. Автоматизм нейронов центра, которые самостоятельно вырабатывают импульсы для совершения дыхательных движений. Этот процесс контролируется газовым составом крови, ее кислотно-щелочным состоянием, метаболическими особенностями организма и физической нагрузкой, а также условиями окружающей среды.
    2. Углекислый газ вызывает стимуляцию дыхательного центра. При недостатке кислорода в окружающем воздухе его поступает со вдохом мало, поэтому наступает компенсация: увеличение частоты и глубины дыхания.
    3. Газовый состав крови напрямую влияет на работу дыхательного центра. При недостатке кислорода (гипоксии) кислотно-основное состояние крови смещается в сторону кислого (ацидоз). Ткани не справляются со своими функциональными обязанностями, так как для их деятельности не хватает кислорода. В связи с этим увеличивается частота дыхания, но оно поверхностное, т.е. недостаточно эффективное.
    4. В организме человека существует несколько рефлексогенных зон, стимуляция которых изменяет ритм дыхания. Резкое раздражение рецепторов тепла или холода кожи может привести к рефлекторной остановке дыхания. При чихании, глотании дыхательная деятельность кратковременно останавливается. Сосудистая синокаротидная зона, как и дыхательный центр, чувствительна к изменению газового состава среды.

    Нормальный дыхательный цикл

    Исходя из полученной информации, дыхательный цикл можно изобразить следующим образом:

    Активация инспираторных нейронов за счет повышения концентрации углекислого газа — нервный импульс направляется из вентральных ядер по нервным волокнам в моторецепторы диафрагмальных и межреберных нервов — увеличение объема легких и грудной клетки — вдох — раздражение рецепторов растяжения альвеол — направление нервного импульса к экспираторному отделу дыхательного центра — раздражение отдела — выдох.

    Данная схема получила название дыхательного контура. Процесс ритмичности этих циклов контролируется пневмотаксическим центром.

    Дыхательным центром называют совокупность нервных клеток, расположенных в разных отделах центральной нервной системы, обеспечивающих координированную ритмическую деятельность дыхательных мышц и приспособление дыхания к изменяющимся условиям внешней и внутренней среды организма.

    Некоторые группы нервных клеток являются обязательно необходимыми для ритмической деятельности дыхательных мышц. Они расположены в ретикулярной формации продолговатого мозга, составляя дыхательный центр в узком смысле слова. Нарушение функции этих клеток приводит к прекращению дыхания вследствие паралича дыхательных мышц.

    Иннервация дыхательных мышц . Дыхательный центр продолговатого мозга посылает импульсы к мотонейронам, расположенным в передних рогах серого вещества спинного мозга, иннервирующим дыхательную мускулатуру.

    Мотонейроны, отростки которых образуют диафрагмальные нервы, иннервирующие диафрагму, находятся в передних рогах 3-4-го шейных сегментов. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах грудного отдела спинного мозга. Отсюда понятно, что при перерезке спинного мозга между грудными и шейными сегментами прекращается реберное дыхание, а диафрагмальное дыхание сохраняется, так как двигательное ядро диафрагмального нерва, находящееся выше перерезки, сохраняет связь с дыхательным центром и диафрагмой. При, перерезке спинного мозга под продолговатым дыхание полностью прекращается и наступает гибель организма от задушения. При такой перерезке мозга, однако, продолжаются в течение некоторого времени сокращения вспомогательных дыхательных мышц ноздрей и гортани, которые иннервируются нервами, выходящими непосредственно из продолговатого мозга.

    Локализация дыхательного центра . Уже в древности было известно, что повреждение спинного мозга ниже продолговатого приводит к смерти. В 1812 г. Легаллуа путем перерезки мозга у птиц, а в 1842 г. Флуранс путем раздражения и разрушения участков продолговатого мозга дали объяснение этого факта и привели экспериментальные доказательства местонахождения дыхательного центра в продолговатом мозгу. Флуранс представлял дыхательный центр как ограниченную зону размером с булавочную головку и дал ему название «жизненного узла».

    Н. А. Миславский в 1885 г., применяя методику точечного раздражения и разрушения отдельных участков продолговатого мозга, установил, что дыхательный центр расположен в ретикулярной формации продолговатого мозга, в области дна IV желудочка, и является парным, причем каждая его половина иннервирует дыхательные мышцы той же половины тела. Кроме того, Н. А. Миславский показал, что дыхательный центр представляет собой сложное образование, состоящее из центра вдоха (инспираторный центр) и центра выдоха (экспираторный центр).

    Он пришёл к заключению, что определенный участок продолговатого мозга является центром, регулирующим и координирующим дыхательные движения Выводы Н. А. Миславского подтверждены многочисленными экспериментами исследованиями, в частности с проведенными в последнее время с помощью микроэлектродной техники. При записи электрических потенциалов отдельных нейронов дыхательного центра обнаружено, что в нем существуют нейроны, разряды которых резко учащаются в фазу вдоха, и другие нейроны, разряды которых учащаются в фазу выдоха.

    Раздражение отдельных точек продолговатого мозга электрическим током, проводимое с помощью микроэлектродов, также выявило наличие нейронов, стимуляция которых вызывает акт вдоха, и других нейронов, стимуляция которых вызывает акт выдоха.

    Баумгартеном в 1956 г.показано, что нейроны дыхательного центра распределены в ретикулярной формации продолговатого мозга, вблизи от striae acusticac (рис. 61 ). Точной границы между экспираторными и инспираторными нейронами существует, однако имеются участки, где преобладают одни из них (инспираторные - в каудальном отделе одиночного пучка tractus solitarius, экспираторные - в вентральном ядре - nucleus ambiguus).

    Рис. 61. Локализация дыхательных центров.

    Лумсден и другие исследователи в опытах на теплокровных животных, нашли что дыхательный центр имеет более сложную структуру, чем это казалось прежде. В верхней части варолиева моста находится так называемый пневмотаксический центр, который контролирует деятельность расположенных ниже дыхательных центров вдоха и выдоха и обеспечивает нормальные дыхательные движения. Значение пневмотаксического центра состоит в том, что во время вдоха он вызывает возбуждение центра выдоха и, таким образом, обеспечивает ритмическое чередование и выдоха.

    Деятельность всей совокупности нейронов, образующих дыхательный центр, является необходимой для сохранения нормального дыхания. Однако в процессах регуляции дыхания принимают участие также вышележащие отделы центральной нервной системы, которые обеспечивают приспособительные изменения дыхания при различных видах деятельности организма. Важная роль в регуляции дыхання принадлежит большим полушариям головного мозга и их коре, благодаря которой осуществляется приспособление дыхательных движений при разговоре, пении, спорте и трудовой деятельности человека.

    На рисунке - нижняя часть ствола мозга (вид сзади). ПН - центр пневмотаксиса; ИНСП - инспираторный; ЭКСП - экспираторный центры. Центры являются двусторонними, но для упрощения схемы на каждой из сторон изображен только один из центров. Перерезка выше линии 1 на дыхании не отражается. Перерезка по линии 2 отделяет центр пневмотаксиса. Перерезка ниже линии 3 вызывает прекращение дыхания.

    Автоматия дыхательного центра . Нейронам дыхательного центра свойственна ритмическая автоматия. Это видно из того, что даже после полного выключения приходящих к дыхательному центру афферентных импульсов в его нейронах возникают ритмические колебания биопотенциалов, которые можно зарегистрировать электроизмерительным прибором. Впервые это явление обнаружил еще в 1882 г. И. М. Сеченов. Много позднее Эдриан и Бутендайк посредством осциллографа с усилителем зарегистрировали ритмические колебания электрических потенциалов в изолированном стволе мозга золотой рыбки. Б. Д. Кравчинскнй наблюдал подобные ритмические колебания электрических потенциалов, происходящих в ритме дыхания, в изолированном продолговатом мозгу лягушки.

    Автоматическое возбуждение дыхательного центра обусловлено протекающими в нем самом процессами обмена веществ и его высокой чувствительностью к углекислоте. Автоматия центра регулируется нервными импульсами, приходящими от рецепторов легких, сосудистых рефлексогенных зон, дыхательных и скелетных мышц, а также импульсами из вышележащих отделов центральной нервной системы и, наконец, гуморальными влияниями.