Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Как приготовить тортилью
  • Имбирный чай — рецепты приготовления
  • Имбирный чай — рецепты приготовления
  • Критерии и порядок канонизации святых в русской православной церкви Начало Бытия Церкви, Ее рост и Ее назначение
  • Как найти м среднюю. Расчет средних показателей

    Как найти м среднюю. Расчет средних показателей

    Начиная рассуждать о средних величинах, чаще всего вспоминают, как заканчивали школу и поступали в учебное заведение. Тогда по аттестату рассчитывался средний балл: все оценки (и хорошие, и не очень) складывали, полученную сумму делили на их количество. Так вычисляется самый простой вид средней, которая называется средняя арифметическая простая. На практике в статистике применяются различные виды средних величин: арифметическая, гармоническая, геометрическая, квадратическая, структурные средние. Тот или иной их вид используется в зависимости от характера данных и целей исследования.

    Средняя величина является наиболее распространенным статистическим показателем, с помощью которого дается обобщающая характеристика совокупности однотипных явлений по одному из варьирующих признаков. Она показывает уровень признака в расчете на единицу совокупности. С помощью средних величин проводится сравнение различных совокупностей по варьирующим признакам, изучаются закономерности развития явлений и процессов общественной жизни.

    В статистике применяются два класса средних: степенные (аналитические) и структурные. Последние используются для характеристики структуры вариационного ряда и будут рассмотрены далее в гл. 8.

    К группе степенных средних относят среднюю арифметическую, гармоническую, геометрическую, квадратическую. Индивидуальные формулы для их вычисления можно привести к виду, общему для всех степенных средних, а именно

    где m - показатель степенной средней: при m = 1 получаем формулу для вычисления средней арифметической, при m = 0 - средней геометрической, m = -1 - средней гармонической, при m = 2 - средней квадратической;

    x i - варианты (значения, которые принимает признак);

    f i - частоты.

    Главным условием, при котором можно использовать степенные средние в статистическом анализе, является однородность совокупности, которая не должна содержать исходных данных, резко различающихся по своему количественному значению (в литературе они носят название аномальных наблюдений).

    Продемонстрируем важность этого условия на следующем примере.

    Пример 6.1. Вычислим среднюю заработную плату сотрудников малого предприятия.

    Таблица 6.1. Заработная плата работников
    № п/п Заработная плата, руб. № п/п Заработная плата, руб.
    1 5 950 11 7 000
    2 6 790 12 5 950
    3 6 790 13 6 790
    4 5 950 14 5 950
    5 7 000 5 6 790
    6 6 790 16 7 000
    7 5 950 17 6 790
    8 7 000 18 7 000
    9 6 790 19 7 000
    10 6 790 20 5 950

    Для расчета среднего размера заработной платы необходимо просуммировать заработную плату, начисленную всем работникам предприятия (т.е. найти фонд заработной платы), и разделить на число работающих:


    А теперь добавим в нашу совокупность всего лишь одного человека (директора этого предприятия), но с окладом в 50 000 руб. В таком случае вычисляемая средняя будет совсем другая:

    Как видим, она превышает 7000 руб., т.д. она больше всех значений признака за исключением одного-единственного наблюдения.

    Для того чтобы таких случаев не происходило на практике, и средняя не теряла бы своего смысла (в примере 6.1 она уже не выполняет роль обобщающей характеристики совокупности, которой должна быть), при расчете средней следует аномальные, резко выделяющиеся наблюдения либо исключить из анализа и тем самым сделать совокупность однородной, либо разбить совокупность на однородные группы и вычислить средние значения по каждой группе и анализировать не общую среднюю, а групповые средние значения.

    6.1. Средняя арифметическая и ее свойства

    Средняя арифметическая вычисляется либо как простая, либо как взвешенная величина.

    При расчете средней заработной платы по данным таблицы примера 6.1 мы сложили все значения признака и поделили на их количество. Ход наших вычислений запишем в виде формулы средней арифметической простой

    где х i - варианты (отдельные значения признака);

    п - число единиц в совокупности.

    Пример 6.2. Теперь сгруппируем наши данные из таблицы примера 6.1, т.д. построим дискретный вариационный ряд распределения работающих по уровню заработной платы. Результаты группировки представлены в таблице.

    Запишем выражение для вычисления среднего уровня заработной платы в более компактной форме:

    В примере 6.2 была применена формула средней арифметической взвешенной

    где f i - частоты, показывающие, сколько раз встречается значение признака х i y единиц совокупности.

    Расчет средней арифметической взвешенной удобно проводить в таблице, как это показано ниже (табл. 6.3):

    Таблица 6.3. Расчет средней арифметической в дискретном ряду
    Исходные данные Расчетный показатель
    заработная плата, руб. численность работающих, чел. фонд заработной платы, руб.
    x i f i x i f i
    5 950 6 35 760
    6 790 8 54 320
    7 000 6 42 000
    Итого 20 132 080

    Следует отметить, что средняя арифметическая простая используется в тех случаях, когда данные не сгруппированы или сгруппированы, но все частоты равны между собой.

    Часто результаты наблюдения представляют в виде интервального ряда распределения (см. таблицу в примере 6.4). Тогда при расчете средней в качестве x i берут середины интервалов. Если первый и последний интервалы открыты (не имеют одной из границ), то их условно "закрывают", принимая за величины данного интервала величину примыкающего интервала, т.д. первый закрывают исходя из величины второго, а последний - по величине предпоследнего.

    Пример 6.3. По результатам выборочного обследования одной из групп населения рассчитаем размер среднедушевого денежного дохода.

    В приведенной таблице середина первого интервала равна 500. Действительно, величина второго интервала - 1000 (2000-1000); тогда нижняя граница первого равна 0 (1000-1000), а его середина - 500. Аналогично поступаем с последним интервалом. За его середину принимаем 25 000: величина предпоследнего интервала 10 000 (20 000-10 000), тогда его верхняя граница - 30 000 (20 000 + 10 000), а середина, соответственно, - 25 000.

    Таблица 6.4. Расчет средней арифметической в интервальном ряду
    Среднедушевой денежный доход, руб. в месяц Численность населения к итогу, % f i Середины интервалов x i x i f i
    До 1 000 4,1 500 2 050
    1 000-2 000 8,6 1 500 12 900
    2 000-4 000 12,9 3 000 38 700
    4 000-6 000 13,0 5 000 65 000
    6 000-8 000 10,5 7 000 73 500
    8 000-10 000 27,8 9 000 250 200
    10 000-20 000 12,7 15 000 190 500
    20 000 и выше 10,4 25 000 260 000
    Итого 100,0 - 892 850

    Тогда среднедушевой размер месячного дохода составит

    Самым распространенным видом средней является средняя арифметическая.

    Средняя арифметическая простая

    Простая среднеарифметическая величина представляет собой среднее слагаемое, при определении которого общий объем данного признака в данных поровну распределяется между всеми единицами, входящими в данную совокупность. Так, среднегодовая выработка продукции на одного работающего — это такая величина объема продукции, которая приходилась бы на каждого работника, если бы весь объем выпущенной продукции в одинаковой степени распределялся между всеми сотрудниками организации. Среднеарифметическая простая величина исчисляется по формуле:

    Простая средняя арифметическая — Равна отношению суммы индивидуальных значений признака к количеству признаков в совокупности

    Пример 1. Бригада из 6 рабочих получает в месяц 3 3,2 3,3 3,5 3,8 3,1 тыс.руб.

    Найти среднюю заработную плату
    Решение: (3 + 3,2 + 3,3 +3,5 + 3,8 + 3,1) / 6 = 3,32 тыс. руб.

    Средняя арифметическая взвешенная

    Если объем совокупности данных большой и представляет собой ряд распределения, то исчисляется взвешенная среднеарифметическая величина. Так определяют средневзвешенную цену за единицу продукции: общую стоимость продукции (сумму произведений ее количества на цену единицы продукции) делят на суммарное количество продукции.

    Представим это в виде следующей формулы:

    Взвешенная средняя арифметическая — равна отношению (суммы произведений значения признака к частоте повторения данного признака) к (сумме частот всех признаков).Используется, когда варианты исследуемой совокупности встречаются неодинаковое количество раз.

    Пример 2. Найти среднюю заработную плату рабочих цеха за месяц

    Средняя заработная плата может быть получена путем деления общей суммы заработной платы на общее число рабочих:

    Ответ: 3,35 тыс.руб.

    Средняя арифметическая для интервального ряда

    При расчете средней арифметической для интервального вариационного ряда сначала определяют среднюю для каждого интервала, как полусумму верхней и нижней границ, а затем — среднюю всего ряда. В случае открытых интервалов значение нижнего или верхнего интервала определяется по величине интервалов, примыкающих к ним.

    Средние, вычисляемые из интервальных рядов являются приближенными.

    Пример 3 . Определить средний возраст студентов вечернего отделения.

    Средние, вычисляемые из интервальных рядов являются приближенными. Степень их приближения зависит от того, в какой мере фактическое распределение единиц совокупности внутри интервала приближается к равномерному.

    При расчете средних в качестве весов могут использоваться не только абсолютные, но и относительные величины (частость):

    Средняя арифметическая обладает целым рядом свойств, которые более полно раскрывают ее сущность и упрощают расчет:

    1. Произведение средней на сумму частот всегда равно сумме произведений вариант на частоты, т.е.

    2.Средняя арифметическая суммы варьирующих величин равна сумме средних арифметических этих величин:

    3.Алгебраическая сумма отклонений индивидуальных значений признака от средней равна нулю:

    4.Сумма квадратов отклонений вариантов от средней меньше, чем сумма квадратов отклонений от любой другой произвольной величины , т.е.

    Как посчитать среднее значение чисел в Excel

    Найти среднее арифметическое чисел в Excel можно с помощью функции .

    Синтаксис СРЗНАЧ

    =СРЗНАЧ(число1;[число2];…) – русская версия

    Аргументы СРЗНАЧ

    • число1 – первое число или диапазон чисел, для расчета среднего арифметического;
    • число2 (Опционально) – второе число или диапазон чисел для расчета среднего арифметического. Максимальное количество аргументов функции – 255.

    Для расчета проделайте следующие шаги:

    • Выделите любую ячейку;
    • Напишите в ней формулу =СРЗНАЧ(
    • Выделите диапазон ячеек, для которого требуется сделать расчет;
    • Нажмите клавишу “Enter” на клавиатуре

    Функция рассчитает среднее значение в указанном диапазоне среди тех ячеек, в которых есть числа.

    Как найти среднее значение с учетом текста

    Если в диапазоне данных есть пустые строки или текст, то функция воспринимает их как “ноль”. Если среди данных есть логические выражения ЛОЖЬ или ИСТИНА, то ЛОЖЬ функция воспринимает как “ноль”, а ИСТИНА как “1”.

    Как найти среднее арифметическое по условию

    Для расчета среднего по условию или критерию используется функция . Например, представим что у нас есть данные по продажам товаров:

    Наша задача вычислить среднее значение продаж ручек. Для этого проделаем следующие шаги:

    • В ячейке A13 напишем название товара “Ручки”;
    • В ячейке B13 введем формулу:

    =СРЗНАЧЕСЛИ(A2:A10;A13;B2:B10)

    Диапазон ячеек “А2:A10 ” указывает на список товаров, в котором мы будем искать слово “Ручки”. Аргумент A13 это ссылка на ячейку с текстом, который мы будем искать среди всего списка товаров. Диапазон ячеек “B2:B10 ” это диапазон с данными продаж товаров, среди которых функция найдет “Ручки” и вычислит среднее значение.


    Предположим, что нужно найти среднее число дней для выполнения задач, различными сотрудниками. Или вы хотите вычисление интервала времени 10 лет Средняя температура в определенный день. Вычисление среднего значения ряда чисел несколькими способами.

    Среднее функция меры центральной тенденции, в которой находится центр ряда чисел в статистическое распределение. Три большинство общих критериями центральной тенденции выступают.

      Среднее Среднее арифметическое и вычисляется путем добавления ряда чисел и затем деления количества этих чисел. Например среднее значение 2, 3, 3, 5, 7 и 10 имеет 30, разделенных на 6, 5;

      Медиана Средний номер ряда чисел. Половина чисел имеют значения, которые больше, чем Медиана, а половина чисел имеют значения, которые меньше, чем Медиана. Например медиана 2, 3, 3, 5, 7 и 10 - 4.

      Режим Наиболее часто встречающееся число в группе чисел. Например режим 2, 3, 3, 5, 7 и 10 - 3.

    Эти три меры центральной тенденции симметричную распределение ряда чисел, являются одни и те же. В асимметричное распределение ряда чисел они могут быть разными.

    Вычисление среднего значения ячеек, расположенных непрерывно в одной строке или одном столбце

    Выполните следующие действия.

    Вычисление среднего значения ячеек, расположенных вразброс

    Для выполнения этой задачи используется функция СРЗНАЧ . Скопируйте в приведенной ниже таблице на пустой лист.

    Вычисление среднего взвешенного значения

    СУММПРОИЗВ и сумм . Пример vThis вычисляет среднюю цену единицы измерения, оплаченная через три покупки, где находится каждый покупки для различное количество единиц измерения по различным ценам за единицу.

    Скопируйте в приведенной ниже таблице на пустой лист.

    Вычисление среднего значения чисел, без учета нулевых значений

    Для выполнения этой задачи используются функции СРЗНАЧ и если . Скопируйте приведенную ниже таблицу и имейте в виду, что в этом примере чтобы проще было понять, скопируйте его на пустой лист.

    5.1. Понятие средней величины

    Средняя величина – это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.

    Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В отличие от средней абсолютная величина, характеризующая уровень признака отдельной единицы совокупности, не позволяет сравнивать значения признака у единиц, относящихся к разным совокупностям. Так, если нужно сопоставить уровни оплаты труда работников на двух предприятиях, то нельзя сравнивать по данному признаку двух работников разных предприятий. Оплата труда выбранных для сравнения работников может быть не типичной для этих предприятий. Если же сравнивать размеры фондов оплаты труда на рассматриваемых предприятиях, то не учитывается численность работающих и, следовательно, нельзя определить, где уровень оплаты труда выше. В конечном итоге сравнить можно лишь средние показатели, т.е. сколько в среднем получает один работник на каждом предприятии. Таким образом, возникает необходимость расчета средней величины как обобщающей характеристики совокупности.

    Вычисление среднего – один из распространенных приемов обобщения; средний показатель отрицает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.

    Для того, чтобы средний показатель был действительно типизирующим, он должен рассчитываться с учетом определенных принципов.

    Остановимся на некоторых общих принципах применения средних величин.
    1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.
    2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.
    3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.
    4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.

    5.2. Виды средних и способы их вычисления

    Рассмотрим теперь виды средних величин, особенности их исчисления и области применения. Средние величины делятся на два больших класса: степенные средние, структурные средние.

    К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая.

    В качестве структурных средних рассматриваются мода и медиана.

    Остановимся на степенных средних. Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняя считается по не сгруппированным данным и имеет следующий общий вид:

    где X i – варианта (значение) осредняемого признака;

    n – число вариант.

    Взвешенная средняя считается по сгруппированным данным и имеет общий вид

    ,

    где X i – варианта (значение) осредняемого признака или серединное значение интервала, в котором измеряется варианта;
    m – показатель степени средней;
    f i – частота, показывающая, сколько раз встречается i-e значение осредняемого признака.

    Приведем в качестве примера расчет среднего возраста студентов в группе из 20 человек:


    Средний возраст рассчитаем по формуле простой средней:

    Сгруппируем исходные данные. Получим следующий ряд распределения:

    В результате группировки получаем новый показатель – частоту, указывающую число студентов в возрасте Х лет. Следовательно, средний возраст студентов группы будет рассчитываться по формуле взвешенной средней:

    Общие формулы расчета степенных средних имеют показатель степени (m). В зависимости от того, какое значение он принимает, различают следующие виды степенных средних:
    средняя гармоническая, если m = -1;
    средняя геометрическая, если m –> 0;
    средняя арифметическая, если m = 1;
    средняя квадратическая, если m = 2;
    средняя кубическая, если m = 3.

    Формулы степенных средних приведены в табл. 4.4.

    Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина:

    В статистической практике чаще, чем остальные виды средних взвешенных, используются средние арифметические и средние гармонические взвешенные.

    Таблица 5.1

    Виды степенных средних

    Вид степенной
    средней
    Показатель
    степени (m)
    Формула расчета
    Простая Взвешенная
    Гармоническая -1
    Геометрическая 0
    Арифметическая 1
    Квадратическая 2
    Кубическая 3

    Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности – носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

    Главное требование к формуле расчета среднего значения заключается в том, чтобы все этапы расчета имели реальное содержательное обоснование; полученное среднее значение должно заменить индивидуальные значения признака у каждого объекта без нарушения связи индивидуальных и сводных показателей. Иначе говоря, средняя величина должна исчисляться так, чтобы при замене каждого индивидуального значения осредняемого показателя его средней величиной оставался без изменения некоторый итоговый сводный показатель, связанный тем или другим образом с осредняемым . Этот итоговый показатель называется определяющим, поскольку характер его взаимосвязи с индивидуальными значениями определяет конкретную формулу расчета средней величины. Покажем это правило на примере средней геометрической.

    Формула средней геометрической

    используется чаще всего при расчете среднего значения по индивидуальным относительным величинам динамики.

    Средняя геометрическая применяется, если задана последовательность цепных относительных величин динамики, указывающих, например, на рост объема производства по сравнению с уровнем предыдущего года: i 1 , i 2 , i 3 ,..., i n . Очевидно, что объем производства в последнем году определяется начальным его уровнем (q 0) и последующим наращиванием по годам:

    q n =q 0 × i 1 × i 2 ×...×i n .

    Приняв q n в качестве определяющего показателя и заменяя индивидуальные значения показателей динамики средними, приходим к соотношению

    Отсюда

    5.3. Структурные средние

    Особый вид средних величин – структурные средние – применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен (например, если бы в рассмотренном примере отсутствовали данные и об объеме производства, и о сумме затрат по группам предприятий).

    В качестве структурных средних чаще всего используют показатели моды – наиболее часто повторяющегося значения признака – и медианы – величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака не превышает медианного уровня, а у другой – не меньше его.

    Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С помощью интерполяции в этом медианном интервале находят значение медианы:

    ,

    где X Me – нижняя граница медианного интервала;
    h Me – его величина;
    (Sum m)/2 – половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении);
    S Me-1 – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала;
    m Me – число наблюдений или объем взвешивающего признака в медианном интервале (также в абсолютном либо относительном выражении).

    В нашем примере могут быть получены даже три медианных значения – исходя из признаков количества предприятий, объема продукции и общей суммы затрат на производство:

    Таким образом, у половины предприятий уровень себестоимость единицы продукции превышает 125,19 тыс. руб., половина всего объема продукции производится с уровнем затрат на изделие больше 124,79 тыс. руб. и 50 % общей суммы затрат образуется при уровне себестоимости одного изделия выше 125,07 тыс. руб. Заметим также, что наблюдается некоторая тенденция к росту себестоимости, так как Ме 2 = 124,79 тыс. руб., а средний уровень равен 123,15 тыс. руб.

    При расчете модального значения признака по данным интервального ряда надо обращать внимание на то, чтобы интервалы были одинаковыми, поскольку от этого зависит показатель повторяемости значений признака X. Для интервального ряда с равными интервалами величина моды определяется как

    где Х Mo – нижнее значение модального интервала;
    m Mo – число наблюдений или объем взвешивающего признака в модальном интервале (в абсолютном либо относительном выражении);
    m Mo -1 – то же для интервала, предшествующего модальному;
    m Mo+1 – то же для интервала, следующего за модальным;
    h – величина интервала изменения признака в группах.

    Для нашего примера можно рассчитать три модальных значения исходя из признаков числа предприятий, объема продукции и суммы затрат. Во всех трех случаях модальный интервал один и тот же, так как для одного и того же интервала оказываются наибольшими и число предприятий, и объем продукции, и общая сумма затрат на производство:

    Таким образом, чаще всего встречаются предприятия с уровнем себестоимости 126,75 тыс. руб., чаще всего выпускается продукция с уровнем затрат 126,69 тыс. руб., и чаще всего затраты на производство объясняются уровнем себестоимости в 123,73 тыс. руб.

    5.4. Показатели вариации

    Конкретные условия, в которых находится каждый из изучаемых объектов, а также особенности их собственного развития (социальные, экономические и пр.) выражаются соответствующими числовыми уровнями статистических показателей. Таким образом, вариация, т.е. несовпадение уровней одного и того же показателя у разных объектов, имеет объективный характер и помогает познать сущность изучаемого явления.

    Для измерения вариации в статистике применяют несколько способов.

    Наиболее простым является расчет показателя размаха вариации Н как разницы между максимальным (X max) и минимальным (X min) наблюдаемыми значениями признака:

    H=X max - X min .

    Однако размах вариации показывает лишь крайние значения признака. Повторяемость промежуточных значений здесь не учитывается.

    Более строгими характеристиками являются показатели колеблемости относительно среднего уровня признака. Простейший показатель такого типа – среднее линейное отклонение Л как среднее арифметическое значение абсолютных отклонений признака от его среднего уровня:

    При повторяемости отдельных значений Х используют формулу средней арифметической взвешенной:

    (Напомним, что алгебраическая сумма отклонений от среднего уровня равна нулю.)

    Показатель среднего линейного отклонения нашел широкое применение на практике. С его помощью анализируются, например, состав работающих, ритмичность производства, равномерность поставок материалов, разрабатываются системы материального стимулирования. Но, к сожалению, этот показатель усложняет расчеты вероятностного типа, затрудняет применение методов математической статистики. Поэтому в статистических научных исследованиях для измерения вариации чаще всего применяют показатель дисперсии.

    Дисперсия признака (s 2) определяется на основе квадратической степенной средней:

    .

    Показатель s, равный , называется средним квадратическим отклонением.

    В общей теории статистики показатель дисперсии является оценкой одноименного показателя теории вероятностей и (как сумма квадратов отклонений) оценкой дисперсии в математической статистике, что позволяет использовать положения этих теоретических дисциплин для анализа социально-экономических процессов.

    Если вариация оценивается по небольшому числу наблюдений, взятых из неограниченной генеральной совокупности, то и среднее значение признака определяется с некоторой погрешностью. Расчетная величина дисперсии оказывается смещенной в сторону уменьшения. Для получения несмещенной оценки выборочную дисперсию, полученную по приведенным ранее формулам, надо умножить на величину n / (n - 1). В итоге при малом числе наблюдений (< 30) дисперсию признака рекомендуется вычислять по формуле

    Обычно уже при n > (15÷20) расхождение смещенной и несмещенной оценок становится несущественным. По этой же причине обычно не учитывают смещенность и в формуле сложения дисперсий.

    Если из генеральной совокупности сделать несколько выборок и каждый раз при этом определять среднее значение признака, то возникает задача оценки колеблемости средних. Оценить дисперсию среднего значения можно и на основе всего одного выборочного наблюдения по формуле

    ,

    где n – объем выборки; s 2 – дисперсия признака, рассчитанная по данным выборки.

    Величина носит название средней ошибки выборки и является характеристикой отклонения выборочного среднего значения признака Х от его истинной средней величины. Показатель средней ошибки используется при оценке достоверности результатов выборочного наблюдения.

    Показатели относительного рассеивания. Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей). Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.

    1. Коэффициентом осцилляции отражает относительную колеблемость крайних значений признака вокруг средней

    .

    2. Относительное линейное отключение характеризует долю усредненного значения признака абсолютных отклонений от средней величины

    .

    3. Коэффициент вариации:

    является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин.

    В статистике совокупности, имеющие коэффициент вариации больше 30–35 %, принято считать неоднородными.

    У такого способа оценки вариации есть и существенный недостаток. Действительно, пусть, например, исходная совокупность рабочих, имеющих средний стаж 15 лет, со средним квадратическим отклонением s = 10 лет, «состарилась» еще на 15 лет. Теперь = 30 лет, а среднеквадратическое отклонение по-прежнему равно 10. Совокупность, ранее бывшая неоднородной (10/15 × 100 = 66,7%), со временем оказывается, таким образом, вполне однородной (10/30 × 100 = 33,3 %).

    Боярский А.Я. Теоретические исследования по статистике: Сб. Науч. Трудов.– М.: Статистика,1974. С. 19–57.

    Предыдущая